Merge pull request #6264 from vladmandic/add-state-info
add missing state info
This commit is contained in:
commit
545ae8cb1c
5 changed files with 31 additions and 7 deletions
|
@ -58,6 +58,9 @@ cached_images: LruCache = LruCache(max_size=5)
|
||||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
|
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
|
shared.state.begin()
|
||||||
|
shared.state.job = 'extras'
|
||||||
|
|
||||||
imageArr = []
|
imageArr = []
|
||||||
# Also keep track of original file names
|
# Also keep track of original file names
|
||||||
imageNameArr = []
|
imageNameArr = []
|
||||||
|
@ -94,6 +97,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
||||||
# Extra operation definitions
|
# Extra operation definitions
|
||||||
|
|
||||||
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
shared.state.job = 'extras-gfpgan'
|
||||||
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
||||||
res = Image.fromarray(restored_img)
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
|
@ -104,6 +108,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
||||||
return (res, info)
|
return (res, info)
|
||||||
|
|
||||||
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
shared.state.job = 'extras-codeformer'
|
||||||
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
||||||
res = Image.fromarray(restored_img)
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
|
@ -114,6 +119,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
||||||
return (res, info)
|
return (res, info)
|
||||||
|
|
||||||
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
||||||
|
shared.state.job = 'extras-upscale'
|
||||||
upscaler = shared.sd_upscalers[scaler_index]
|
upscaler = shared.sd_upscalers[scaler_index]
|
||||||
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
||||||
if mode == 1 and crop:
|
if mode == 1 and crop:
|
||||||
|
@ -180,6 +186,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
||||||
for image, image_name in zip(imageArr, imageNameArr):
|
for image, image_name in zip(imageArr, imageNameArr):
|
||||||
if image is None:
|
if image is None:
|
||||||
return outputs, "Please select an input image.", ''
|
return outputs, "Please select an input image.", ''
|
||||||
|
|
||||||
|
shared.state.textinfo = f'Processing image {image_name}'
|
||||||
|
|
||||||
existing_pnginfo = image.info or {}
|
existing_pnginfo = image.info or {}
|
||||||
|
|
||||||
image = image.convert("RGB")
|
image = image.convert("RGB")
|
||||||
|
@ -193,6 +202,10 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
||||||
else:
|
else:
|
||||||
basename = ''
|
basename = ''
|
||||||
|
|
||||||
|
if opts.enable_pnginfo: # append info before save
|
||||||
|
image.info = existing_pnginfo
|
||||||
|
image.info["extras"] = info
|
||||||
|
|
||||||
if save_output:
|
if save_output:
|
||||||
# Add upscaler name as a suffix.
|
# Add upscaler name as a suffix.
|
||||||
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
|
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
|
||||||
|
@ -203,10 +216,6 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
||||||
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
|
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
|
||||||
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
|
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
|
||||||
|
|
||||||
if opts.enable_pnginfo:
|
|
||||||
image.info = existing_pnginfo
|
|
||||||
image.info["extras"] = info
|
|
||||||
|
|
||||||
if extras_mode != 2 or show_extras_results :
|
if extras_mode != 2 or show_extras_results :
|
||||||
outputs.append(image)
|
outputs.append(image)
|
||||||
|
|
||||||
|
@ -242,6 +251,9 @@ def run_pnginfo(image):
|
||||||
|
|
||||||
|
|
||||||
def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format):
|
def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format):
|
||||||
|
shared.state.begin()
|
||||||
|
shared.state.job = 'model-merge'
|
||||||
|
|
||||||
def weighted_sum(theta0, theta1, alpha):
|
def weighted_sum(theta0, theta1, alpha):
|
||||||
return ((1 - alpha) * theta0) + (alpha * theta1)
|
return ((1 - alpha) * theta0) + (alpha * theta1)
|
||||||
|
|
||||||
|
@ -263,8 +275,11 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam
|
||||||
theta_func1, theta_func2 = theta_funcs[interp_method]
|
theta_func1, theta_func2 = theta_funcs[interp_method]
|
||||||
|
|
||||||
if theta_func1 and not tertiary_model_info:
|
if theta_func1 and not tertiary_model_info:
|
||||||
|
shared.state.textinfo = "Failed: Interpolation method requires a tertiary model."
|
||||||
|
shared.state.end()
|
||||||
return ["Failed: Interpolation method requires a tertiary model."] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
|
return ["Failed: Interpolation method requires a tertiary model."] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
|
||||||
|
|
||||||
|
shared.state.textinfo = f"Loading {secondary_model_info.filename}..."
|
||||||
print(f"Loading {secondary_model_info.filename}...")
|
print(f"Loading {secondary_model_info.filename}...")
|
||||||
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
|
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
|
||||||
|
|
||||||
|
@ -281,6 +296,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam
|
||||||
theta_1[key] = torch.zeros_like(theta_1[key])
|
theta_1[key] = torch.zeros_like(theta_1[key])
|
||||||
del theta_2
|
del theta_2
|
||||||
|
|
||||||
|
shared.state.textinfo = f"Loading {primary_model_info.filename}..."
|
||||||
print(f"Loading {primary_model_info.filename}...")
|
print(f"Loading {primary_model_info.filename}...")
|
||||||
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
|
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
|
||||||
|
|
||||||
|
@ -291,6 +307,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam
|
||||||
a = theta_0[key]
|
a = theta_0[key]
|
||||||
b = theta_1[key]
|
b = theta_1[key]
|
||||||
|
|
||||||
|
shared.state.textinfo = f'Merging layer {key}'
|
||||||
# this enables merging an inpainting model (A) with another one (B);
|
# this enables merging an inpainting model (A) with another one (B);
|
||||||
# where normal model would have 4 channels, for latenst space, inpainting model would
|
# where normal model would have 4 channels, for latenst space, inpainting model would
|
||||||
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
|
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
|
||||||
|
@ -303,8 +320,6 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam
|
||||||
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
|
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
|
||||||
result_is_inpainting_model = True
|
result_is_inpainting_model = True
|
||||||
else:
|
else:
|
||||||
assert a.shape == b.shape, f'Incompatible shapes for layer {key}: A is {a.shape}, and B is {b.shape}'
|
|
||||||
|
|
||||||
theta_0[key] = theta_func2(a, b, multiplier)
|
theta_0[key] = theta_func2(a, b, multiplier)
|
||||||
|
|
||||||
if save_as_half:
|
if save_as_half:
|
||||||
|
@ -332,6 +347,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam
|
||||||
|
|
||||||
output_modelname = os.path.join(ckpt_dir, filename)
|
output_modelname = os.path.join(ckpt_dir, filename)
|
||||||
|
|
||||||
|
shared.state.textinfo = f"Saving to {output_modelname}..."
|
||||||
print(f"Saving to {output_modelname}...")
|
print(f"Saving to {output_modelname}...")
|
||||||
|
|
||||||
_, extension = os.path.splitext(output_modelname)
|
_, extension = os.path.splitext(output_modelname)
|
||||||
|
@ -343,4 +359,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam
|
||||||
sd_models.list_models()
|
sd_models.list_models()
|
||||||
|
|
||||||
print("Checkpoint saved.")
|
print("Checkpoint saved.")
|
||||||
|
shared.state.textinfo = "Checkpoint saved to " + output_modelname
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
|
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
|
||||||
|
|
|
@ -417,6 +417,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
|
||||||
shared.loaded_hypernetwork = Hypernetwork()
|
shared.loaded_hypernetwork = Hypernetwork()
|
||||||
shared.loaded_hypernetwork.load(path)
|
shared.loaded_hypernetwork.load(path)
|
||||||
|
|
||||||
|
shared.state.job = "train-hypernetwork"
|
||||||
shared.state.textinfo = "Initializing hypernetwork training..."
|
shared.state.textinfo = "Initializing hypernetwork training..."
|
||||||
shared.state.job_count = steps
|
shared.state.job_count = steps
|
||||||
|
|
||||||
|
|
|
@ -136,7 +136,8 @@ class InterrogateModels:
|
||||||
|
|
||||||
def interrogate(self, pil_image):
|
def interrogate(self, pil_image):
|
||||||
res = ""
|
res = ""
|
||||||
|
shared.state.begin()
|
||||||
|
shared.state.job = 'interrogate'
|
||||||
try:
|
try:
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
|
@ -177,5 +178,6 @@ class InterrogateModels:
|
||||||
res += "<error>"
|
res += "<error>"
|
||||||
|
|
||||||
self.unload()
|
self.unload()
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
|
@ -124,6 +124,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
|
||||||
|
|
||||||
files = listfiles(src)
|
files = listfiles(src)
|
||||||
|
|
||||||
|
shared.state.job = "preprocess"
|
||||||
shared.state.textinfo = "Preprocessing..."
|
shared.state.textinfo = "Preprocessing..."
|
||||||
shared.state.job_count = len(files)
|
shared.state.job_count = len(files)
|
||||||
|
|
||||||
|
|
|
@ -245,6 +245,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||||
create_image_every = create_image_every or 0
|
create_image_every = create_image_every or 0
|
||||||
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
|
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
|
||||||
|
|
||||||
|
shared.state.job = "train-embedding"
|
||||||
shared.state.textinfo = "Initializing textual inversion training..."
|
shared.state.textinfo = "Initializing textual inversion training..."
|
||||||
shared.state.job_count = steps
|
shared.state.job_count = steps
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue