Fix loss_dict problem
This commit is contained in:
parent
205991df78
commit
598f7fcd84
1 changed files with 3 additions and 1 deletions
|
@ -561,6 +561,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||
_loss_step = 0 #internal
|
||||
# size = len(ds.indexes)
|
||||
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
||||
loss_logging = []
|
||||
# losses = torch.zeros((size,))
|
||||
# previous_mean_losses = [0]
|
||||
# previous_mean_loss = 0
|
||||
|
@ -601,6 +602,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||
else:
|
||||
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
||||
loss = shared.sd_model(x, c)[0] / gradient_step
|
||||
loss_logging.append(loss.item())
|
||||
del x
|
||||
del c
|
||||
|
||||
|
@ -644,7 +646,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||
if shared.opts.training_enable_tensorboard:
|
||||
epoch_num = hypernetwork.step // len(ds)
|
||||
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
|
||||
mean_loss = sum(sum(x) for x in loss_dict.values()) / sum(len(x) for x in loss_dict.values())
|
||||
mean_loss = sum(loss_logging) / len(loss_logging)
|
||||
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
|
||||
|
||||
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
|
||||
|
|
Loading…
Reference in a new issue