face detection algo, configurability, reusability
Try to move the crop in the direction of a face if it is present More internal configuration options for choosing weights of each of the algorithm's findings Move logic into its module
This commit is contained in:
parent
41e3877be2
commit
59ed744383
2 changed files with 230 additions and 136 deletions
216
modules/textual_inversion/autocrop.py
Normal file
216
modules/textual_inversion/autocrop.py
Normal file
|
@ -0,0 +1,216 @@
|
|||
import cv2
|
||||
from collections import defaultdict
|
||||
from math import log, sqrt
|
||||
import numpy as np
|
||||
from PIL import Image, ImageDraw
|
||||
|
||||
GREEN = "#0F0"
|
||||
BLUE = "#00F"
|
||||
RED = "#F00"
|
||||
|
||||
def crop_image(im, settings):
|
||||
""" Intelligently crop an image to the subject matter """
|
||||
if im.height > im.width:
|
||||
im = im.resize((settings.crop_width, settings.crop_height * im.height // im.width))
|
||||
else:
|
||||
im = im.resize((settings.crop_width * im.width // im.height, settings.crop_height))
|
||||
|
||||
focus = focal_point(im, settings)
|
||||
|
||||
# take the focal point and turn it into crop coordinates that try to center over the focal
|
||||
# point but then get adjusted back into the frame
|
||||
y_half = int(settings.crop_height / 2)
|
||||
x_half = int(settings.crop_width / 2)
|
||||
|
||||
x1 = focus.x - x_half
|
||||
if x1 < 0:
|
||||
x1 = 0
|
||||
elif x1 + settings.crop_width > im.width:
|
||||
x1 = im.width - settings.crop_width
|
||||
|
||||
y1 = focus.y - y_half
|
||||
if y1 < 0:
|
||||
y1 = 0
|
||||
elif y1 + settings.crop_height > im.height:
|
||||
y1 = im.height - settings.crop_height
|
||||
|
||||
x2 = x1 + settings.crop_width
|
||||
y2 = y1 + settings.crop_height
|
||||
|
||||
crop = [x1, y1, x2, y2]
|
||||
|
||||
if settings.annotate_image:
|
||||
d = ImageDraw.Draw(im)
|
||||
rect = list(crop)
|
||||
rect[2] -= 1
|
||||
rect[3] -= 1
|
||||
d.rectangle(rect, outline=GREEN)
|
||||
if settings.destop_view_image:
|
||||
im.show()
|
||||
|
||||
return im.crop(tuple(crop))
|
||||
|
||||
def focal_point(im, settings):
|
||||
corner_points = image_corner_points(im, settings)
|
||||
entropy_points = image_entropy_points(im, settings)
|
||||
face_points = image_face_points(im, settings)
|
||||
|
||||
total_points = len(corner_points) + len(entropy_points) + len(face_points)
|
||||
|
||||
corner_weight = settings.corner_points_weight
|
||||
entropy_weight = settings.entropy_points_weight
|
||||
face_weight = settings.face_points_weight
|
||||
|
||||
weight_pref_total = corner_weight + entropy_weight + face_weight
|
||||
|
||||
# weight things
|
||||
pois = []
|
||||
if weight_pref_total == 0 or total_points == 0:
|
||||
return pois
|
||||
|
||||
pois.extend(
|
||||
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (corner_weight/weight_pref_total) / (len(corner_points)/total_points) )) for p in corner_points ]
|
||||
)
|
||||
pois.extend(
|
||||
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (entropy_weight/weight_pref_total) / (len(entropy_points)/total_points) )) for p in entropy_points ]
|
||||
)
|
||||
pois.extend(
|
||||
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ]
|
||||
)
|
||||
|
||||
if settings.annotate_image:
|
||||
d = ImageDraw.Draw(im)
|
||||
|
||||
average_point = poi_average(pois, settings, im=im)
|
||||
|
||||
if settings.annotate_image:
|
||||
d.ellipse([average_point.x - 25, average_point.y - 25, average_point.x + 25, average_point.y + 25], outline=GREEN)
|
||||
|
||||
return average_point
|
||||
|
||||
|
||||
def image_face_points(im, settings):
|
||||
np_im = np.array(im)
|
||||
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
||||
classifier = cv2.CascadeClassifier(f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml')
|
||||
|
||||
minsize = int(min(im.width, im.height) * 0.15) # at least N percent of the smallest side
|
||||
faces = classifier.detectMultiScale(gray, scaleFactor=1.05,
|
||||
minNeighbors=5, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
||||
|
||||
if len(faces) == 0:
|
||||
return []
|
||||
|
||||
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
||||
if settings.annotate_image:
|
||||
for f in rects:
|
||||
d = ImageDraw.Draw(im)
|
||||
d.rectangle(f, outline=RED)
|
||||
|
||||
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2) for r in rects]
|
||||
|
||||
|
||||
def image_corner_points(im, settings):
|
||||
grayscale = im.convert("L")
|
||||
|
||||
# naive attempt at preventing focal points from collecting at watermarks near the bottom
|
||||
gd = ImageDraw.Draw(grayscale)
|
||||
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
|
||||
|
||||
np_im = np.array(grayscale)
|
||||
|
||||
points = cv2.goodFeaturesToTrack(
|
||||
np_im,
|
||||
maxCorners=100,
|
||||
qualityLevel=0.04,
|
||||
minDistance=min(grayscale.width, grayscale.height)*0.07,
|
||||
useHarrisDetector=False,
|
||||
)
|
||||
|
||||
if points is None:
|
||||
return []
|
||||
|
||||
focal_points = []
|
||||
for point in points:
|
||||
x, y = point.ravel()
|
||||
focal_points.append(PointOfInterest(x, y))
|
||||
|
||||
return focal_points
|
||||
|
||||
|
||||
def image_entropy_points(im, settings):
|
||||
landscape = im.height < im.width
|
||||
portrait = im.height > im.width
|
||||
if landscape:
|
||||
move_idx = [0, 2]
|
||||
move_max = im.size[0]
|
||||
elif portrait:
|
||||
move_idx = [1, 3]
|
||||
move_max = im.size[1]
|
||||
else:
|
||||
return []
|
||||
|
||||
e_max = 0
|
||||
crop_current = [0, 0, settings.crop_width, settings.crop_height]
|
||||
crop_best = crop_current
|
||||
while crop_current[move_idx[1]] < move_max:
|
||||
crop = im.crop(tuple(crop_current))
|
||||
e = image_entropy(crop)
|
||||
|
||||
if (e > e_max):
|
||||
e_max = e
|
||||
crop_best = list(crop_current)
|
||||
|
||||
crop_current[move_idx[0]] += 4
|
||||
crop_current[move_idx[1]] += 4
|
||||
|
||||
x_mid = int(crop_best[0] + settings.crop_width/2)
|
||||
y_mid = int(crop_best[1] + settings.crop_height/2)
|
||||
|
||||
return [PointOfInterest(x_mid, y_mid)]
|
||||
|
||||
|
||||
def image_entropy(im):
|
||||
# greyscale image entropy
|
||||
band = np.asarray(im.convert("1"))
|
||||
hist, _ = np.histogram(band, bins=range(0, 256))
|
||||
hist = hist[hist > 0]
|
||||
return -np.log2(hist / hist.sum()).sum()
|
||||
|
||||
|
||||
def poi_average(pois, settings, im=None):
|
||||
weight = 0.0
|
||||
x = 0.0
|
||||
y = 0.0
|
||||
for pois in pois:
|
||||
if settings.annotate_image and im is not None:
|
||||
w = 4 * 0.5 * sqrt(pois.weight)
|
||||
d = ImageDraw.Draw(im)
|
||||
d.ellipse([
|
||||
pois.x - w, pois.y - w,
|
||||
pois.x + w, pois.y + w ], fill=BLUE)
|
||||
weight += pois.weight
|
||||
x += pois.x * pois.weight
|
||||
y += pois.y * pois.weight
|
||||
avg_x = round(x / weight)
|
||||
avg_y = round(y / weight)
|
||||
|
||||
return PointOfInterest(avg_x, avg_y)
|
||||
|
||||
|
||||
class PointOfInterest:
|
||||
def __init__(self, x, y, weight=1.0):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.weight = weight
|
||||
|
||||
|
||||
class Settings:
|
||||
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False):
|
||||
self.crop_width = crop_width
|
||||
self.crop_height = crop_height
|
||||
self.corner_points_weight = corner_points_weight
|
||||
self.entropy_points_weight = entropy_points_weight
|
||||
self.face_points_weight = entropy_points_weight
|
||||
self.annotate_image = annotate_image
|
||||
self.destop_view_image = False
|
|
@ -1,7 +1,5 @@
|
|||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image, ImageOps, ImageDraw
|
||||
from PIL import Image, ImageOps
|
||||
import platform
|
||||
import sys
|
||||
import tqdm
|
||||
|
@ -9,6 +7,7 @@ import time
|
|||
|
||||
from modules import shared, images
|
||||
from modules.shared import opts, cmd_opts
|
||||
from modules.textual_inversion import autocrop
|
||||
if cmd_opts.deepdanbooru:
|
||||
import modules.deepbooru as deepbooru
|
||||
|
||||
|
@ -80,6 +79,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
|
|||
if process_flip:
|
||||
save_pic_with_caption(ImageOps.mirror(image), index)
|
||||
|
||||
|
||||
for index, imagefile in enumerate(tqdm.tqdm(files)):
|
||||
subindex = [0]
|
||||
filename = os.path.join(src, imagefile)
|
||||
|
@ -118,37 +118,16 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
|
|||
|
||||
processing_option_ran = True
|
||||
|
||||
if process_entropy_focus and (is_tall or is_wide):
|
||||
if is_tall:
|
||||
img = img.resize((width, height * img.height // img.width))
|
||||
else:
|
||||
img = img.resize((width * img.width // img.height, height))
|
||||
|
||||
x_focal_center, y_focal_center = image_central_focal_point(img, width, height)
|
||||
|
||||
# take the focal point and turn it into crop coordinates that try to center over the focal
|
||||
# point but then get adjusted back into the frame
|
||||
y_half = int(height / 2)
|
||||
x_half = int(width / 2)
|
||||
|
||||
x1 = x_focal_center - x_half
|
||||
if x1 < 0:
|
||||
x1 = 0
|
||||
elif x1 + width > img.width:
|
||||
x1 = img.width - width
|
||||
|
||||
y1 = y_focal_center - y_half
|
||||
if y1 < 0:
|
||||
y1 = 0
|
||||
elif y1 + height > img.height:
|
||||
y1 = img.height - height
|
||||
|
||||
x2 = x1 + width
|
||||
y2 = y1 + height
|
||||
|
||||
crop = [x1, y1, x2, y2]
|
||||
|
||||
focal = img.crop(tuple(crop))
|
||||
if process_entropy_focus and img.height != img.width:
|
||||
autocrop_settings = autocrop.Settings(
|
||||
crop_width = width,
|
||||
crop_height = height,
|
||||
face_points_weight = 0.9,
|
||||
entropy_points_weight = 0.7,
|
||||
corner_points_weight = 0.5,
|
||||
annotate_image = False
|
||||
)
|
||||
focal = autocrop.crop_image(img, autocrop_settings)
|
||||
save_pic(focal, index)
|
||||
|
||||
processing_option_ran = True
|
||||
|
@ -157,105 +136,4 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
|
|||
img = images.resize_image(1, img, width, height)
|
||||
save_pic(img, index)
|
||||
|
||||
shared.state.nextjob()
|
||||
|
||||
|
||||
def image_central_focal_point(im, target_width, target_height):
|
||||
focal_points = []
|
||||
|
||||
focal_points.extend(
|
||||
image_focal_points(im)
|
||||
)
|
||||
|
||||
fp_entropy = image_entropy_point(im, target_width, target_height)
|
||||
fp_entropy['weight'] = len(focal_points) + 1 # about half of the weight to entropy
|
||||
|
||||
focal_points.append(fp_entropy)
|
||||
|
||||
weight = 0.0
|
||||
x = 0.0
|
||||
y = 0.0
|
||||
for focal_point in focal_points:
|
||||
weight += focal_point['weight']
|
||||
x += focal_point['x'] * focal_point['weight']
|
||||
y += focal_point['y'] * focal_point['weight']
|
||||
avg_x = round(x // weight)
|
||||
avg_y = round(y // weight)
|
||||
|
||||
return avg_x, avg_y
|
||||
|
||||
|
||||
def image_focal_points(im):
|
||||
grayscale = im.convert("L")
|
||||
|
||||
# naive attempt at preventing focal points from collecting at watermarks near the bottom
|
||||
gd = ImageDraw.Draw(grayscale)
|
||||
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
|
||||
|
||||
np_im = np.array(grayscale)
|
||||
|
||||
points = cv2.goodFeaturesToTrack(
|
||||
np_im,
|
||||
maxCorners=100,
|
||||
qualityLevel=0.04,
|
||||
minDistance=min(grayscale.width, grayscale.height)*0.07,
|
||||
useHarrisDetector=False,
|
||||
)
|
||||
|
||||
if points is None:
|
||||
return []
|
||||
|
||||
focal_points = []
|
||||
for point in points:
|
||||
x, y = point.ravel()
|
||||
focal_points.append({
|
||||
'x': x,
|
||||
'y': y,
|
||||
'weight': 1.0
|
||||
})
|
||||
|
||||
return focal_points
|
||||
|
||||
|
||||
def image_entropy_point(im, crop_width, crop_height):
|
||||
landscape = im.height < im.width
|
||||
portrait = im.height > im.width
|
||||
if landscape:
|
||||
move_idx = [0, 2]
|
||||
move_max = im.size[0]
|
||||
elif portrait:
|
||||
move_idx = [1, 3]
|
||||
move_max = im.size[1]
|
||||
|
||||
e_max = 0
|
||||
crop_current = [0, 0, crop_width, crop_height]
|
||||
crop_best = crop_current
|
||||
while crop_current[move_idx[1]] < move_max:
|
||||
crop = im.crop(tuple(crop_current))
|
||||
e = image_entropy(crop)
|
||||
|
||||
if (e > e_max):
|
||||
e_max = e
|
||||
crop_best = list(crop_current)
|
||||
|
||||
crop_current[move_idx[0]] += 4
|
||||
crop_current[move_idx[1]] += 4
|
||||
|
||||
x_mid = int(crop_best[0] + crop_width/2)
|
||||
y_mid = int(crop_best[1] + crop_height/2)
|
||||
|
||||
|
||||
return {
|
||||
'x': x_mid,
|
||||
'y': y_mid,
|
||||
'weight': 1.0
|
||||
}
|
||||
|
||||
|
||||
def image_entropy(im):
|
||||
# greyscale image entropy
|
||||
band = np.asarray(im.convert("1"))
|
||||
hist, _ = np.histogram(band, bins=range(0, 256))
|
||||
hist = hist[hist > 0]
|
||||
return -np.log2(hist / hist.sum()).sum()
|
||||
|
||||
shared.state.nextjob()
|
Loading…
Reference in a new issue