fix pin_memory with different latent sampling method

This commit is contained in:
flamelaw 2022-11-21 10:15:46 +09:00
parent 2d22d72cda
commit 5b57f61ba4
3 changed files with 24 additions and 11 deletions

View file

@ -416,7 +416,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
pin_memory = shared.opts.pin_memory
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, batch_size=ds.batch_size, pin_memory=pin_memory)
latent_sampling_method = ds.latent_sampling_method
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)

View file

@ -138,8 +138,11 @@ class PersonalizedBase(Dataset):
return entry
class PersonalizedDataLoader(DataLoader):
def __init__(self, *args, **kwargs):
super(PersonalizedDataLoader, self).__init__(shuffle=True, drop_last=True, *args, **kwargs)
def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
super(PersonalizedDataLoader, self).__init__(dataset, shuffle=True, drop_last=True, batch_size=batch_size, pin_memory=pin_memory)
if latent_sampling_method == "random":
self.collate_fn = collate_wrapper_random
else:
self.collate_fn = collate_wrapper
@ -148,6 +151,8 @@ class BatchLoader:
self.cond_text = [entry.cond_text for entry in data]
self.cond = [entry.cond for entry in data]
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
#self.emb_index = [entry.emb_index for entry in data]
#print(self.latent_sample.device)
def pin_memory(self):
self.latent_sample = self.latent_sample.pin_memory()
@ -155,3 +160,13 @@ class BatchLoader:
def collate_wrapper(batch):
return BatchLoader(batch)
class BatchLoaderRandom(BatchLoader):
def __init__(self, data):
super().__init__(data)
def pin_memory(self):
return self
def collate_wrapper_random(batch):
return BatchLoaderRandom(batch)

View file

@ -277,7 +277,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
latent_sampling_method = ds.latent_sampling_method
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, batch_size=ds.batch_size, pin_memory=False)
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
if unload:
shared.sd_model.first_stage_model.to(devices.cpu)
@ -333,11 +333,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
#print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
#scaler.unscale_(optimizer)
#print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
#torch.nn.utils.clip_grad_norm_(embedding.vec, max_norm=1.0)
#print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
scaler.step(optimizer)
scaler.update()
embedding.step += 1