Merge pull request #4844 from R-N/vae-misc
Remove no longer necessary code from VAE selector, fix #4651
This commit is contained in:
commit
5bfef6e063
3 changed files with 10 additions and 15 deletions
|
@ -165,16 +165,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
|||
|
||||
cache_enabled = shared.opts.sd_checkpoint_cache > 0
|
||||
|
||||
if cache_enabled:
|
||||
sd_vae.restore_base_vae(model)
|
||||
|
||||
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||
|
||||
if cache_enabled and checkpoint_info in checkpoints_loaded:
|
||||
# use checkpoint cache
|
||||
vae_name = sd_vae.get_filename(vae_file) if vae_file else None
|
||||
vae_message = f" with {vae_name} VAE" if vae_name else ""
|
||||
print(f"Loading weights [{sd_model_hash}]{vae_message} from cache")
|
||||
print(f"Loading weights [{sd_model_hash}] from cache")
|
||||
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
||||
else:
|
||||
# load from file
|
||||
|
@ -220,6 +213,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
|||
model.sd_model_checkpoint = checkpoint_file
|
||||
model.sd_checkpoint_info = checkpoint_info
|
||||
|
||||
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||
sd_vae.load_vae(model, vae_file)
|
||||
|
||||
|
||||
|
|
|
@ -91,7 +91,7 @@ def get_vae_from_settings(vae_file="auto"):
|
|||
# if VAE selected but not found, fallback to auto
|
||||
if vae_file not in default_vae_values and not os.path.isfile(vae_file):
|
||||
vae_file = "auto"
|
||||
print("Selected VAE doesn't exist")
|
||||
print(f"Selected VAE doesn't exist: {vae_file}")
|
||||
return vae_file
|
||||
|
||||
|
||||
|
@ -101,15 +101,15 @@ def resolve_vae(checkpoint_file=None, vae_file="auto"):
|
|||
# if vae_file argument is provided, it takes priority, but not saved
|
||||
if vae_file and vae_file not in default_vae_list:
|
||||
if not os.path.isfile(vae_file):
|
||||
print(f"VAE provided as function argument doesn't exist: {vae_file}")
|
||||
vae_file = "auto"
|
||||
print("VAE provided as function argument doesn't exist")
|
||||
# for the first load, if vae-path is provided, it takes priority, saved, and failure is reported
|
||||
if first_load and shared.cmd_opts.vae_path is not None:
|
||||
if os.path.isfile(shared.cmd_opts.vae_path):
|
||||
vae_file = shared.cmd_opts.vae_path
|
||||
shared.opts.data['sd_vae'] = get_filename(vae_file)
|
||||
else:
|
||||
print("VAE provided as command line argument doesn't exist")
|
||||
print(f"VAE provided as command line argument doesn't exist: {vae_file}")
|
||||
# fallback to selector in settings, if vae selector not set to act as default fallback
|
||||
if not shared.opts.sd_vae_as_default:
|
||||
vae_file = get_vae_from_settings(vae_file)
|
||||
|
@ -117,20 +117,20 @@ def resolve_vae(checkpoint_file=None, vae_file="auto"):
|
|||
if vae_file == "auto" and shared.cmd_opts.vae_path is not None:
|
||||
if os.path.isfile(shared.cmd_opts.vae_path):
|
||||
vae_file = shared.cmd_opts.vae_path
|
||||
print("Using VAE provided as command line argument")
|
||||
print(f"Using VAE provided as command line argument: {vae_file}")
|
||||
# if still not found, try look for ".vae.pt" beside model
|
||||
model_path = os.path.splitext(checkpoint_file)[0]
|
||||
if vae_file == "auto":
|
||||
vae_file_try = model_path + ".vae.pt"
|
||||
if os.path.isfile(vae_file_try):
|
||||
vae_file = vae_file_try
|
||||
print("Using VAE found beside selected model")
|
||||
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||
# if still not found, try look for ".vae.ckpt" beside model
|
||||
if vae_file == "auto":
|
||||
vae_file_try = model_path + ".vae.ckpt"
|
||||
if os.path.isfile(vae_file_try):
|
||||
vae_file = vae_file_try
|
||||
print("Using VAE found beside selected model")
|
||||
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||
# No more fallbacks for auto
|
||||
if vae_file == "auto":
|
||||
vae_file = None
|
||||
|
@ -146,6 +146,7 @@ def load_vae(model, vae_file=None):
|
|||
# save_settings = False
|
||||
|
||||
if vae_file:
|
||||
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
|
||||
print(f"Loading VAE weights from: {vae_file}")
|
||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
||||
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||
|
|
|
@ -334,7 +334,7 @@ options_templates.update(options_section(('training', "Training"), {
|
|||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
||||
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list),
|
||||
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list),
|
||||
"sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
|
||||
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
||||
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
||||
|
|
Loading…
Reference in a new issue