Implemented workaround to allow the use of seeds with the mps/metal backend. Fixed img2img's use of unsupported precision float64 with mps backend.
This commit is contained in:
parent
2920ca7892
commit
5dc05c0d0d
1 changed files with 31 additions and 7 deletions
|
@ -1,3 +1,6 @@
|
|||
# Metal backend fixes written and placed
|
||||
# into the public domain by Elias Oenal <sd@eliasoenal.com>
|
||||
|
||||
import contextlib
|
||||
import json
|
||||
import math
|
||||
|
@ -105,18 +108,32 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
|||
for i, seed in enumerate(seeds):
|
||||
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
|
||||
|
||||
# Pytorch currently doesn't handle seeting randomness correctly when the metal backend is used.
|
||||
if shared.device.type == 'mps':
|
||||
g = torch.Generator(device='cpu')
|
||||
|
||||
subnoise = None
|
||||
if subseeds is not None:
|
||||
subseed = 0 if i >= len(subseeds) else subseeds[i]
|
||||
torch.manual_seed(subseed)
|
||||
subnoise = torch.randn(noise_shape, device=shared.device)
|
||||
if shared.device.type == 'mps':
|
||||
g.manual_seed(subseed)
|
||||
subnoise = torch.randn(noise_shape, generator=g, device='cpu').to('mps')
|
||||
else: # cpu or cuda
|
||||
torch.manual_seed(subseed)
|
||||
subnoise = torch.randn(noise_shape, device=shared.device)
|
||||
|
||||
# randn results depend on device; gpu and cpu get different results for same seed;
|
||||
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
|
||||
# but the original script had it like this, so I do not dare change it for now because
|
||||
# it will break everyone's seeds.
|
||||
torch.manual_seed(seed)
|
||||
noise = torch.randn(noise_shape, device=shared.device)
|
||||
# When using the mps backend falling back to the cpu device is needed, since mps currently
|
||||
# does not implement seeding properly.
|
||||
if shared.device.type == 'mps':
|
||||
g.manual_seed(seed)
|
||||
noise = torch.randn(noise_shape, generator=g, device='cpu').to('mps')
|
||||
else: # cpu or cuda
|
||||
torch.manual_seed(seed)
|
||||
x = torch.randn(shape, device=shared.device)
|
||||
|
||||
if subnoise is not None:
|
||||
#noise = subnoise * subseed_strength + noise * (1 - subseed_strength)
|
||||
|
@ -127,8 +144,12 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
|||
# noise_shape = (64, 80)
|
||||
# shape = (64, 72)
|
||||
|
||||
torch.manual_seed(seed)
|
||||
x = torch.randn(shape, device=shared.device)
|
||||
if shared.device.type == 'mps':
|
||||
g.manual_seed(seed)
|
||||
x = torch.randn(shape, generator=g, device='cpu').to('mps')
|
||||
else:
|
||||
torch.manual_seed(seed)
|
||||
x = torch.randn(shape, device=shared.device)
|
||||
dx = (shape[2] - noise_shape[2]) // 2 # -4
|
||||
dy = (shape[1] - noise_shape[1]) // 2
|
||||
w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
|
||||
|
@ -463,7 +484,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||
if self.image_mask is not None:
|
||||
init_mask = latent_mask
|
||||
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float64), 2, 0) / 255
|
||||
if shared.device.type == 'mps': # mps backend does not support float64
|
||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
||||
else:
|
||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float64), 2, 0) / 255
|
||||
latmask = latmask[0]
|
||||
latmask = np.around(latmask)
|
||||
latmask = np.tile(latmask[None], (4, 1, 1))
|
||||
|
|
Loading…
Reference in a new issue