Merge branch 'master' into fix/train-preprocess-keep-ratio

This commit is contained in:
AUTOMATIC1111 2022-10-21 18:36:29 +03:00 committed by GitHub
commit 5e9afa5c8a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
29 changed files with 1106 additions and 209 deletions

View file

@ -45,6 +45,8 @@ body:
attributes:
label: Commit where the problem happens
description: Which commit are you running ? (copy the **Commit hash** shown in the cmd/terminal when you launch the UI)
validations:
required: true
- type: dropdown
id: platforms
attributes:

5
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View file

@ -0,0 +1,5 @@
blank_issues_enabled: false
contact_links:
- name: WebUI Community Support
url: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions
about: Please ask and answer questions here.

View file

@ -11,6 +11,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- One click install and run script (but you still must install python and git)
- Outpainting
- Inpainting
- Color Sketch
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
@ -23,6 +24,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers
- train embeddings on 8GB (also reports of 6GB working)
- Extras tab with:
- GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN
@ -37,14 +39,14 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
- Prompt length validation
- get length of prompt in tokens as you type
- get a warning after generation if some text was truncated
- Live prompt token length validation
- Generation parameters
- parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
- Running arbitrary python code from UI (must run with --allow-code to enable)
- Mouseover hints for most UI elements
@ -59,10 +61,10 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img
- Img2img Alternative
- Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge two checkpoints into one
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND`
@ -70,14 +72,26 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- History tab: view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
- hypernetworks and embeddings options
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
- Clip skip
- Use Hypernetworks
- Use VAEs
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- Aesthetic Gradients, a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
Alternatively, use Google Colab:
Alternatively, use online services (like Google Colab):
- [Colab, maintained by Akaibu](https://colab.research.google.com/drive/1kw3egmSn-KgWsikYvOMjJkVDsPLjEMzl)
- [Colab, original by me, outdated](https://colab.research.google.com/drive/1Iy-xW9t1-OQWhb0hNxueGij8phCyluOh).
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"

View file

@ -3,12 +3,12 @@ let currentWidth = null;
let currentHeight = null;
let arFrameTimeout = setTimeout(function(){},0);
function dimensionChange(e,dimname){
function dimensionChange(e, is_width, is_height){
if(dimname == 'Width'){
if(is_width){
currentWidth = e.target.value*1.0
}
if(dimname == 'Height'){
if(is_height){
currentHeight = e.target.value*1.0
}
@ -18,22 +18,13 @@ function dimensionChange(e,dimname){
return;
}
var img2imgMode = gradioApp().querySelector('#mode_img2img.tabs > div > button.rounded-t-lg.border-gray-200')
if(img2imgMode){
img2imgMode=img2imgMode.innerText
}else{
return;
}
var redrawImage = gradioApp().querySelector('div[data-testid=image] img');
var inpaintImage = gradioApp().querySelector('#img2maskimg div[data-testid=image] img')
var targetElement = null;
if(img2imgMode=='img2img' && redrawImage){
targetElement = redrawImage;
}else if(img2imgMode=='Inpaint' && inpaintImage){
targetElement = inpaintImage;
var tabIndex = get_tab_index('mode_img2img')
if(tabIndex == 0){
targetElement = gradioApp().querySelector('div[data-testid=image] img');
} else if(tabIndex == 1){
targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img');
}
if(targetElement){
@ -98,22 +89,20 @@ onUiUpdate(function(){
var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
if(inImg2img){
let inputs = gradioApp().querySelectorAll('input');
inputs.forEach(function(e){
let parentLabel = e.parentElement.querySelector('label')
if(parentLabel && parentLabel.innerText){
if(!e.classList.contains('scrollwatch')){
if(parentLabel.innerText == 'Width' || parentLabel.innerText == 'Height'){
e.addEventListener('input', function(e){dimensionChange(e,parentLabel.innerText)} )
e.classList.add('scrollwatch')
}
if(parentLabel.innerText == 'Width'){
currentWidth = e.value*1.0
}
if(parentLabel.innerText == 'Height'){
currentHeight = e.value*1.0
}
}
}
inputs.forEach(function(e){
var is_width = e.parentElement.id == "img2img_width"
var is_height = e.parentElement.id == "img2img_height"
if((is_width || is_height) && !e.classList.contains('scrollwatch')){
e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} )
e.classList.add('scrollwatch')
}
if(is_width){
currentWidth = e.value*1.0
}
if(is_height){
currentHeight = e.value*1.0
}
})
}
});

View file

@ -43,7 +43,7 @@ function dropReplaceImage( imgWrap, files ) {
window.document.addEventListener('dragover', e => {
const target = e.composedPath()[0];
const imgWrap = target.closest('[data-testid="image"]');
if ( !imgWrap && target.placeholder.indexOf("Prompt") == -1) {
if ( !imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) {
return;
}
e.stopPropagation();

241
modules/aesthetic_clip.py Normal file
View file

@ -0,0 +1,241 @@
import copy
import itertools
import os
from pathlib import Path
import html
import gc
import gradio as gr
import torch
from PIL import Image
from torch import optim
from modules import shared
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer
from tqdm.auto import tqdm, trange
from modules.shared import opts, device
def get_all_images_in_folder(folder):
return [os.path.join(folder, f) for f in os.listdir(folder) if
os.path.isfile(os.path.join(folder, f)) and check_is_valid_image_file(f)]
def check_is_valid_image_file(filename):
return filename.lower().endswith(('.png', '.jpg', '.jpeg', ".gif", ".tiff", ".webp"))
def batched(dataset, total, n=1):
for ndx in range(0, total, n):
yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))]
def iter_to_batched(iterable, n=1):
it = iter(iterable)
while True:
chunk = tuple(itertools.islice(it, n))
if not chunk:
return
yield chunk
def create_ui():
import modules.ui
with gr.Group():
with gr.Accordion("Open for Clip Aesthetic!", open=False):
with gr.Row():
aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight",
value=0.9)
aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
with gr.Row():
aesthetic_lr = gr.Textbox(label='Aesthetic learning rate',
placeholder="Aesthetic learning rate", value="0.0001")
aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
aesthetic_imgs = gr.Dropdown(sorted(shared.aesthetic_embeddings.keys()),
label="Aesthetic imgs embedding",
value="None")
modules.ui.create_refresh_button(aesthetic_imgs, shared.update_aesthetic_embeddings, lambda: {"choices": sorted(shared.aesthetic_embeddings.keys())}, "refresh_aesthetic_embeddings")
with gr.Row():
aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs',
placeholder="This text is used to rotate the feature space of the imgs embs",
value="")
aesthetic_slerp_angle = gr.Slider(label='Slerp angle', minimum=0, maximum=1, step=0.01,
value=0.1)
aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative
aesthetic_clip_model = None
def aesthetic_clip():
global aesthetic_clip_model
if aesthetic_clip_model is None or aesthetic_clip_model.name_or_path != shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path:
aesthetic_clip_model = CLIPModel.from_pretrained(shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path)
aesthetic_clip_model.cpu()
return aesthetic_clip_model
def generate_imgs_embd(name, folder, batch_size):
model = aesthetic_clip().to(device)
processor = CLIPProcessor.from_pretrained(model.name_or_path)
with torch.no_grad():
embs = []
for paths in tqdm(iter_to_batched(get_all_images_in_folder(folder), batch_size),
desc=f"Generating embeddings for {name}"):
if shared.state.interrupted:
break
inputs = processor(images=[Image.open(path) for path in paths], return_tensors="pt").to(device)
outputs = model.get_image_features(**inputs).cpu()
embs.append(torch.clone(outputs))
inputs.to("cpu")
del inputs, outputs
embs = torch.cat(embs, dim=0).mean(dim=0, keepdim=True)
# The generated embedding will be located here
path = str(Path(shared.cmd_opts.aesthetic_embeddings_dir) / f"{name}.pt")
torch.save(embs, path)
model.cpu()
del processor
del embs
gc.collect()
torch.cuda.empty_cache()
res = f"""
Done generating embedding for {name}!
Aesthetic embedding saved to {html.escape(path)}
"""
shared.update_aesthetic_embeddings()
return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding",
value="None"), \
gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()),
label="Imgs embedding",
value="None"), res, ""
def slerp(low, high, val):
low_norm = low / torch.norm(low, dim=1, keepdim=True)
high_norm = high / torch.norm(high, dim=1, keepdim=True)
omega = torch.acos((low_norm * high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
return res
class AestheticCLIP:
def __init__(self):
self.skip = False
self.aesthetic_steps = 0
self.aesthetic_weight = 0
self.aesthetic_lr = 0
self.slerp = False
self.aesthetic_text_negative = ""
self.aesthetic_slerp_angle = 0
self.aesthetic_imgs_text = ""
self.image_embs_name = None
self.image_embs = None
self.load_image_embs(None)
def set_aesthetic_params(self, p, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None,
aesthetic_slerp=True, aesthetic_imgs_text="",
aesthetic_slerp_angle=0.15,
aesthetic_text_negative=False):
self.aesthetic_imgs_text = aesthetic_imgs_text
self.aesthetic_slerp_angle = aesthetic_slerp_angle
self.aesthetic_text_negative = aesthetic_text_negative
self.slerp = aesthetic_slerp
self.aesthetic_lr = aesthetic_lr
self.aesthetic_weight = aesthetic_weight
self.aesthetic_steps = aesthetic_steps
self.load_image_embs(image_embs_name)
if self.image_embs_name is not None:
p.extra_generation_params.update({
"Aesthetic LR": aesthetic_lr,
"Aesthetic weight": aesthetic_weight,
"Aesthetic steps": aesthetic_steps,
"Aesthetic embedding": self.image_embs_name,
"Aesthetic slerp": aesthetic_slerp,
"Aesthetic text": aesthetic_imgs_text,
"Aesthetic text negative": aesthetic_text_negative,
"Aesthetic slerp angle": aesthetic_slerp_angle,
})
def set_skip(self, skip):
self.skip = skip
def load_image_embs(self, image_embs_name):
if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None":
image_embs_name = None
self.image_embs_name = None
if image_embs_name is not None and self.image_embs_name != image_embs_name:
self.image_embs_name = image_embs_name
self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device)
self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
self.image_embs.requires_grad_(False)
def __call__(self, z, remade_batch_tokens):
if not self.skip and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name is not None:
tokenizer = shared.sd_model.cond_stage_model.tokenizer
if not opts.use_old_emphasis_implementation:
remade_batch_tokens = [
[tokenizer.bos_token_id] + x[:75] + [tokenizer.eos_token_id] for x in
remade_batch_tokens]
tokens = torch.asarray(remade_batch_tokens).to(device)
model = copy.deepcopy(aesthetic_clip()).to(device)
model.requires_grad_(True)
if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0:
text_embs_2 = model.get_text_features(
**tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device))
if self.aesthetic_text_negative:
text_embs_2 = self.image_embs - text_embs_2
text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True)
img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle)
else:
img_embs = self.image_embs
with torch.enable_grad():
# We optimize the model to maximize the similarity
optimizer = optim.Adam(
model.text_model.parameters(), lr=self.aesthetic_lr
)
for _ in trange(self.aesthetic_steps, desc="Aesthetic optimization"):
text_embs = model.get_text_features(input_ids=tokens)
text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
sim = text_embs @ img_embs.T
loss = -sim
optimizer.zero_grad()
loss.mean().backward()
optimizer.step()
zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
if opts.CLIP_stop_at_last_layers > 1:
zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers]
zn = model.text_model.final_layer_norm(zn)
else:
zn = zn.last_hidden_state
model.cpu()
del model
gc.collect()
torch.cuda.empty_cache()
zn = torch.concat([zn[77 * i:77 * (i + 1)] for i in range(max(z.shape[1] // 77, 1))], 1)
if self.slerp:
z = slerp(z, zn, self.aesthetic_weight)
else:
z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight
return z

View file

@ -39,9 +39,12 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
if input_dir == '':
return outputs, "Please select an input directory.", ''
image_list = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
image_list = [file for file in [os.path.join(input_dir, x) for x in sorted(os.listdir(input_dir))] if os.path.isfile(file)]
for img in image_list:
image = Image.open(img)
try:
image = Image.open(img)
except Exception:
continue
imageArr.append(image)
imageNameArr.append(img)
else:
@ -118,10 +121,14 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
while len(cached_images) > 2:
del cached_images[next(iter(cached_images.keys()))]
if opts.use_original_name_batch and image_name != None:
basename = os.path.splitext(os.path.basename(image_name))[0]
else:
basename = ''
images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
forced_filename=image_name if opts.use_original_name_batch else None)
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
if opts.enable_pnginfo:
image.info = existing_pnginfo

View file

@ -4,13 +4,22 @@ import gradio as gr
from modules.shared import script_path
from modules import shared
re_param_code = r"\s*([\w ]+):\s*([^,]+)(?:,|$)"
re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code)
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
type_of_gr_update = type(gr.update())
def quote(text):
if ',' not in str(text):
return text
text = str(text)
text = text.replace('\\', '\\\\')
text = text.replace('"', '\\"')
return f'"{text}"'
def parse_generation_parameters(x: str):
"""parses generation parameters string, the one you see in text field under the picture in UI:
```
@ -83,7 +92,12 @@ def connect_paste(button, paste_fields, input_comp, js=None):
else:
try:
valtype = type(output.value)
val = valtype(v)
if valtype == bool and v == "False":
val = False
else:
val = valtype(v)
res.append(gr.update(value=val))
except Exception:
res.append(gr.update())

View file

@ -22,16 +22,26 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None):
super().__init__()
assert layer_structure is not None, "layer_structure mut not be None"
assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
if activation_func == "relu":
linears.append(torch.nn.ReLU())
elif activation_func == "leakyrelu":
linears.append(torch.nn.LeakyReLU())
elif activation_func == 'linear' or activation_func is None:
pass
else:
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
@ -42,8 +52,9 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict)
else:
for layer in self.linear:
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
self.to(devices.device)
@ -69,7 +80,8 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self):
layer_structure = []
for layer in self.linear:
layer_structure += [layer.weight, layer.bias]
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer_structure += [layer.weight, layer.bias]
return layer_structure
@ -81,7 +93,7 @@ class Hypernetwork:
filename = None
name = None
def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False):
def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False, activation_func=None):
self.filename = None
self.name = name
self.layers = {}
@ -90,11 +102,12 @@ class Hypernetwork:
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
self.add_layer_norm = add_layer_norm
self.activation_func = activation_func
for size in enable_sizes or []:
self.layers[size] = (
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
)
def weights(self):
@ -117,6 +130,7 @@ class Hypernetwork:
state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['activation_func'] = self.activation_func
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@ -131,12 +145,13 @@ class Hypernetwork:
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.activation_func = state_dict.get('activation_func', None)
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm, self.activation_func),
HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm, self.activation_func),
)
self.name = state_dict.get('name', self.name)
@ -241,6 +256,9 @@ def stack_conds(conds):
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@ -283,6 +301,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
last_saved_file = "<none>"
last_saved_image = "<none>"
forced_filename = "<none>"
ititial_step = hypernetwork.step or 0
if ititial_step > steps:
@ -321,7 +340,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
pbar.set_description(f"loss: {mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
# Before saving, change name to match current checkpoint.
hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
hypernetwork.save(last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
@ -330,7 +351,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
@ -366,7 +388,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if image is not None:
shared.state.current_image = image
image.save(last_saved_image)
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
@ -376,7 +398,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
Loss: {mean_loss:.7f}<br/>
Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
@ -385,6 +407,9 @@ Last saved image: {html.escape(last_saved_image)}<br/>
hypernetwork.sd_checkpoint = checkpoint.hash
hypernetwork.sd_checkpoint_name = checkpoint.model_name
# Before saving for the last time, change name back to the base name (as opposed to the save_hypernetwork_every step-suffixed naming convention).
hypernetwork.name = hypernetwork_name
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork.name}.pt')
hypernetwork.save(filename)
return hypernetwork, filename

View file

@ -10,9 +10,13 @@ from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork
def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False):
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, add_layer_norm=False, activation_func=None):
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists"
if type(layer_structure) == str:
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
@ -22,6 +26,7 @@ def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
add_layer_norm=add_layer_norm,
activation_func=activation_func,
)
hypernet.save(fn)

View file

@ -56,7 +56,7 @@ def process_batch(p, input_dir, output_dir, args):
processed_image.save(os.path.join(output_dir, filename))
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
is_inpaint = mode == 1
is_batch = mode == 2
@ -109,6 +109,8 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
inpainting_mask_invert=inpainting_mask_invert,
)
shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)

View file

@ -28,9 +28,11 @@ class InterrogateModels:
clip_preprocess = None
categories = None
dtype = None
running_on_cpu = None
def __init__(self, content_dir):
self.categories = []
self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
if os.path.exists(content_dir):
for filename in os.listdir(content_dir):
@ -53,7 +55,11 @@ class InterrogateModels:
def load_clip_model(self):
import clip
model, preprocess = clip.load(clip_model_name)
if self.running_on_cpu:
model, preprocess = clip.load(clip_model_name, device="cpu")
else:
model, preprocess = clip.load(clip_model_name)
model.eval()
model = model.to(devices.device_interrogate)
@ -62,14 +68,14 @@ class InterrogateModels:
def load(self):
if self.blip_model is None:
self.blip_model = self.load_blip_model()
if not shared.cmd_opts.no_half:
if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.blip_model = self.blip_model.half()
self.blip_model = self.blip_model.to(devices.device_interrogate)
if self.clip_model is None:
self.clip_model, self.clip_preprocess = self.load_clip_model()
if not shared.cmd_opts.no_half:
if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.clip_model = self.clip_model.half()
self.clip_model = self.clip_model.to(devices.device_interrogate)

View file

@ -12,7 +12,7 @@ from skimage import exposure
from typing import Any, Dict, List, Optional
import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@ -304,7 +304,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.filename.split('\\')[-1].split('.')[0]),
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
"Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
@ -318,7 +318,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params.update(p.extra_generation_params)
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
@ -540,17 +540,37 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
def create_dummy_mask(self, x, width=None, height=None):
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
height = height or self.height
width = width or self.width
# The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
# Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
else:
# Dummy zero conditioning if we're not using inpainting model.
# Still takes up a bit of memory, but no encoder call.
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
image_conditioning = torch.zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
return image_conditioning
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x))
return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x, self.firstphase_width, self.firstphase_height))
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
@ -587,7 +607,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x = None
devices.torch_gc()
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=self.create_dummy_mask(samples))
return samples
@ -613,6 +633,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.inpainting_mask_invert = inpainting_mask_invert
self.mask = None
self.nmask = None
self.image_conditioning = None
def init(self, all_prompts, all_seeds, all_subseeds):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
@ -714,10 +735,39 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
if self.image_mask is not None:
conditioning_mask = np.array(self.image_mask.convert("L"))
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
conditioning_mask = torch.round(conditioning_mask)
else:
conditioning_mask = torch.ones(1, 1, *image.shape[-2:])
# Create another latent image, this time with a masked version of the original input.
conditioning_mask = conditioning_mask.to(image.device)
conditioning_image = image * (1.0 - conditioning_mask)
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
# Create the concatenated conditioning tensor to be fed to `c_concat`
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=self.init_latent.shape[-2:])
conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
self.image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
else:
self.image_conditioning = torch.zeros(
self.init_latent.shape[0], 5, 1, 1,
dtype=self.init_latent.dtype,
device=self.init_latent.device
)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None:
samples = samples * self.nmask + self.init_latent * self.mask

View file

@ -19,6 +19,7 @@ attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
def apply_optimizations():
undo_optimizations()
@ -167,11 +168,11 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
remade_tokens = remade_tokens[:last_comma]
length = len(remade_tokens)
rem = int(math.ceil(length / 75)) * 75 - length
remade_tokens += [id_end] * rem + reloc_tokens
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
if embedding is None:
remade_tokens.append(token)
multipliers.append(weight)
@ -223,7 +224,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def process_text_old(self, text):
id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id
@ -280,7 +280,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
@ -290,7 +290,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
hijack_fixes.append(fixes)
batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def forward(self, text):
use_old = opts.use_old_emphasis_implementation
if use_old:
@ -302,11 +302,11 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
if len(used_custom_terms) > 0:
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
if use_old:
self.hijack.fixes = hijack_fixes
return self.process_tokens(remade_batch_tokens, batch_multipliers)
z = None
i = 0
while max(map(len, remade_batch_tokens)) != 0:
@ -320,7 +320,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
if fix[0] == i:
fixes.append(fix[1])
self.hijack.fixes.append(fixes)
tokens = []
multipliers = []
for j in range(len(remade_batch_tokens)):
@ -332,20 +332,20 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
multipliers.append([1.0] * 75)
z1 = self.process_tokens(tokens, multipliers)
z1 = shared.aesthetic_clip(z1, remade_batch_tokens)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
remade_batch_tokens = rem_tokens
batch_multipliers = rem_multipliers
i += 1
return z
def process_tokens(self, remade_batch_tokens, batch_multipliers):
if not opts.use_old_emphasis_implementation:
remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
tokens = torch.asarray(remade_batch_tokens).to(device)
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
@ -385,8 +385,8 @@ class EmbeddingsWithFixes(torch.nn.Module):
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
emb = embedding.vec
emb_len = min(tensor.shape[0]-offset-1, emb.shape[0])
tensor = torch.cat([tensor[0:offset+1], emb[0:emb_len], tensor[offset+1+emb_len:]])
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
vecs.append(tensor)

View file

@ -0,0 +1,331 @@
import torch
from einops import repeat
from omegaconf import ListConfig
import ldm.models.diffusion.ddpm
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
# =================================================================================================
# Monkey patch DDIMSampler methods from RunwayML repo directly.
# Adapted from:
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
# =================================================================================================
@torch.no_grad()
def sample_ddim(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
if conditioning is not None:
if isinstance(conditioning, dict):
ctmp = conditioning[list(conditioning.keys())[0]]
while isinstance(ctmp, list):
ctmp = ctmp[0]
cbs = ctmp.shape[0]
if cbs != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
else:
if conditioning.shape[0] != batch_size:
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
samples, intermediates = self.ddim_sampling(conditioning, size,
callback=callback,
img_callback=img_callback,
quantize_denoised=quantize_x0,
mask=mask, x0=x0,
ddim_use_original_steps=False,
noise_dropout=noise_dropout,
temperature=temperature,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
x_T=x_T,
log_every_t=log_every_t,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
)
return samples, intermediates
@torch.no_grad()
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None):
b, *_, device = *x.shape, x.device
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
e_t = self.model.apply_model(x, t, c)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2)
if isinstance(c, dict):
assert isinstance(unconditional_conditioning, dict)
c_in = dict()
for k in c:
if isinstance(c[k], list):
c_in[k] = [
torch.cat([unconditional_conditioning[k][i], c[k][i]])
for i in range(len(c[k]))
]
else:
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
else:
c_in = torch.cat([unconditional_conditioning, c])
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
if score_corrector is not None:
assert self.model.parameterization == "eps"
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
if quantize_denoised:
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
# =================================================================================================
# Monkey patch PLMSSampler methods.
# This one was not actually patched correctly in the RunwayML repo, but we can replicate the changes.
# Adapted from:
# https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py
# =================================================================================================
@torch.no_grad()
def sample_plms(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
if conditioning is not None:
if isinstance(conditioning, dict):
ctmp = conditioning[list(conditioning.keys())[0]]
while isinstance(ctmp, list):
ctmp = ctmp[0]
cbs = ctmp.shape[0]
if cbs != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
else:
if conditioning.shape[0] != batch_size:
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
print(f'Data shape for PLMS sampling is {size}')
samples, intermediates = self.plms_sampling(conditioning, size,
callback=callback,
img_callback=img_callback,
quantize_denoised=quantize_x0,
mask=mask, x0=x0,
ddim_use_original_steps=False,
noise_dropout=noise_dropout,
temperature=temperature,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
x_T=x_T,
log_every_t=log_every_t,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
)
return samples, intermediates
@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
b, *_, device = *x.shape, x.device
def get_model_output(x, t):
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
e_t = self.model.apply_model(x, t, c)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2)
if isinstance(c, dict):
assert isinstance(unconditional_conditioning, dict)
c_in = dict()
for k in c:
if isinstance(c[k], list):
c_in[k] = [
torch.cat([unconditional_conditioning[k][i], c[k][i]])
for i in range(len(c[k]))
]
else:
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
else:
c_in = torch.cat([unconditional_conditioning, c])
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
if score_corrector is not None:
assert self.model.parameterization == "eps"
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
return e_t
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
def get_x_prev_and_pred_x0(e_t, index):
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
if quantize_denoised:
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
e_t = get_model_output(x, t)
if len(old_eps) == 0:
# Pseudo Improved Euler (2nd order)
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
e_t_next = get_model_output(x_prev, t_next)
e_t_prime = (e_t + e_t_next) / 2
elif len(old_eps) == 1:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (3 * e_t - old_eps[-1]) / 2
elif len(old_eps) == 2:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
elif len(old_eps) >= 3:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
return x_prev, pred_x0, e_t
# =================================================================================================
# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
# Adapted from:
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddpm.py
# =================================================================================================
@torch.no_grad()
def get_unconditional_conditioning(self, batch_size, null_label=None):
if null_label is not None:
xc = null_label
if isinstance(xc, ListConfig):
xc = list(xc)
if isinstance(xc, dict) or isinstance(xc, list):
c = self.get_learned_conditioning(xc)
else:
if hasattr(xc, "to"):
xc = xc.to(self.device)
c = self.get_learned_conditioning(xc)
else:
# todo: get null label from cond_stage_model
raise NotImplementedError()
c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
return c
class LatentInpaintDiffusion(LatentDiffusion):
def __init__(
self,
concat_keys=("mask", "masked_image"),
masked_image_key="masked_image",
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.masked_image_key = masked_image_key
assert self.masked_image_key in concat_keys
self.concat_keys = concat_keys
def should_hijack_inpainting(checkpoint_info):
return str(checkpoint_info.filename).endswith("inpainting.ckpt") and not checkpoint_info.config.endswith("inpainting.yaml")
def do_inpainting_hijack():
ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms

View file

@ -9,6 +9,7 @@ from ldm.util import instantiate_from_config
from modules import shared, modelloader, devices
from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))
@ -20,7 +21,7 @@ checkpoints_loaded = collections.OrderedDict()
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
from transformers import logging
from transformers import logging, CLIPModel
logging.set_verbosity_error()
except Exception:
@ -154,6 +155,9 @@ def get_state_dict_from_checkpoint(pl_sd):
return pl_sd
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
def load_model_weights(model, checkpoint_info):
checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash
@ -185,7 +189,7 @@ def load_model_weights(model, checkpoint_info):
if os.path.exists(vae_file):
print(f"Loading VAE weights from: {vae_file}")
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"}
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
model.first_stage_model.load_state_dict(vae_dict)
model.first_stage_model.to(devices.dtype_vae)
@ -203,14 +207,26 @@ def load_model_weights(model, checkpoint_info):
model.sd_checkpoint_info = checkpoint_info
def load_model():
def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack
checkpoint_info = select_checkpoint()
checkpoint_info = checkpoint_info or select_checkpoint()
if checkpoint_info.config != shared.cmd_opts.config:
print(f"Loading config from: {checkpoint_info.config}")
sd_config = OmegaConf.load(checkpoint_info.config)
if should_hijack_inpainting(checkpoint_info):
# Hardcoded config for now...
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
sd_config.model.params.use_ema = False
sd_config.model.params.conditioning_key = "hybrid"
sd_config.model.params.unet_config.params.in_channels = 9
# Create a "fake" config with a different name so that we know to unload it when switching models.
checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
do_inpainting_hijack()
sd_model = instantiate_from_config(sd_config.model)
load_model_weights(sd_model, checkpoint_info)
@ -234,9 +250,9 @@ def reload_model_weights(sd_model, info=None):
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
if sd_model.sd_checkpoint_info.config != checkpoint_info.config:
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
checkpoints_loaded.clear()
shared.sd_model = load_model()
shared.sd_model = load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:

View file

@ -117,6 +117,8 @@ class VanillaStableDiffusionSampler:
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def number_of_needed_noises(self, p):
return 0
@ -136,6 +138,12 @@ class VanillaStableDiffusionSampler:
if self.stop_at is not None and self.step > self.stop_at:
raise InterruptedException
# Have to unwrap the inpainting conditioning here to perform pre-processing
image_conditioning = None
if isinstance(cond, dict):
image_conditioning = cond["c_concat"][0]
cond = cond["c_crossattn"][0]
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
@ -157,6 +165,12 @@ class VanillaStableDiffusionSampler:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
if image_conditioning is not None:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
if self.mask is not None:
@ -182,7 +196,7 @@ class VanillaStableDiffusionSampler:
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
self.initialize(p)
@ -196,20 +210,33 @@ class VanillaStableDiffusionSampler:
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.init_latent = x
self.last_latent = x
self.step = 0
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
self.initialize(p)
self.init_latent = None
self.last_latent = x
self.step = 0
steps = steps or p.steps
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
# existing code fails with certain step counts, like 9
try:
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
@ -228,7 +255,7 @@ class CFGDenoiser(torch.nn.Module):
self.init_latent = None
self.step = 0
def forward(self, x, sigma, uncond, cond, cond_scale):
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
if state.interrupted or state.skipped:
raise InterruptedException
@ -239,28 +266,29 @@ class CFGDenoiser(torch.nn.Module):
repeats = [len(conds_list[i]) for i in range(batch_size)]
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
if tensor.shape[1] == uncond.shape[1]:
cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond=cond_in)
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
else:
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=cond_in[a:b])
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
for batch_offset in range(0, tensor.shape[0], batch_size):
a = batch_offset
b = min(a + batch_size, tensor.shape[0])
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=tensor[a:b])
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=uncond)
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
denoised_uncond = x_out[-uncond.shape[0]:]
denoised = torch.clone(denoised_uncond)
@ -306,6 +334,8 @@ class KDiffusionSampler:
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def callback_state(self, d):
step = d['i']
latent = d["denoised"]
@ -361,7 +391,7 @@ class KDiffusionSampler:
return extra_params_kwargs
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
if p.sampler_noise_scheduler_override:
@ -388,12 +418,18 @@ class KDiffusionSampler:
extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs))
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
steps = steps or p.steps
if p.sampler_noise_scheduler_override:
@ -414,7 +450,13 @@ class KDiffusionSampler:
else:
extra_params_kwargs['sigmas'] = sigmas
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs))
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples

View file

@ -3,6 +3,7 @@ import datetime
import json
import os
import sys
from collections import OrderedDict
import gradio as gr
import tqdm
@ -30,6 +31,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(models_path, 'aesthetic_embeddings'), help="aesthetic_embeddings directory(default: aesthetic_embeddings)")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
@ -106,6 +108,21 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
os.makedirs(cmd_opts.aesthetic_embeddings_dir, exist_ok=True)
aesthetic_embeddings = {}
def update_aesthetic_embeddings():
global aesthetic_embeddings
aesthetic_embeddings = {f.replace(".pt", ""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
aesthetic_embeddings = OrderedDict(**{"None": None}, **aesthetic_embeddings)
update_aesthetic_embeddings()
def reload_hypernetworks():
global hypernetworks
@ -249,7 +266,7 @@ options_templates.update(options_section(('system', "System"), {
}))
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"),
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
@ -387,6 +404,11 @@ sd_upscalers = []
sd_model = None
clip_model = None
from modules.aesthetic_clip import AestheticCLIP
aesthetic_clip = AestheticCLIP()
progress_print_out = sys.stdout

View file

@ -83,7 +83,7 @@ class PersonalizedBase(Dataset):
self.dataset.append(entry)
assert len(self.dataset) > 1, "No images have been found in the dataset."
assert len(self.dataset) > 0, "No images have been found in the dataset."
self.length = len(self.dataset) * repeats // batch_size
self.initial_indexes = np.arange(len(self.dataset))
@ -91,7 +91,7 @@ class PersonalizedBase(Dataset):
self.shuffle()
def shuffle(self):
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0]).numpy()]
def create_text(self, filename_text):
text = random.choice(self.lines)

View file

@ -5,6 +5,7 @@ import zlib
from PIL import Image, PngImagePlugin, ImageDraw, ImageFont
from fonts.ttf import Roboto
import torch
from modules.shared import opts
class EmbeddingEncoder(json.JSONEncoder):
@ -133,7 +134,7 @@ def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, t
from math import cos
image = srcimage.copy()
fontsize = 32
if textfont is None:
try:
textfont = ImageFont.truetype(opts.font or Roboto, fontsize)
@ -150,7 +151,7 @@ def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, t
image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size))
draw = ImageDraw.Draw(image)
fontsize = 32
font = ImageFont.truetype(textfont, fontsize)
padding = 10

View file

@ -12,7 +12,7 @@ if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2):
def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2):
try:
if process_caption:
shared.interrogator.load()
@ -22,7 +22,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio)
preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio)
finally:
@ -34,7 +34,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2):
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2):
width = process_width
height = process_height
src = os.path.abspath(process_src)
@ -51,7 +51,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files)
def save_pic_with_caption(image, index):
def save_pic_with_caption(image, index, existing_caption=None):
caption = ""
if process_caption:
@ -69,17 +69,26 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
basename = f"{index:05}-{subindex[0]}-{filename_part}"
image.save(os.path.join(dst, f"{basename}.png"))
if preprocess_txt_action == 'prepend' and existing_caption:
caption = existing_caption + ' ' + caption
elif preprocess_txt_action == 'append' and existing_caption:
caption = caption + ' ' + existing_caption
elif preprocess_txt_action == 'copy' and existing_caption:
caption = existing_caption
caption = caption.strip()
if len(caption) > 0:
with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file:
file.write(caption)
subindex[0] += 1
def save_pic(image, index):
save_pic_with_caption(image, index)
def save_pic(image, index, existing_caption=None):
save_pic_with_caption(image, index, existing_caption=existing_caption)
if process_flip:
save_pic_with_caption(ImageOps.mirror(image), index)
save_pic_with_caption(ImageOps.mirror(image), index, existing_caption=existing_caption)
def split_pic(image, inverse_xy):
if inverse_xy:
@ -112,6 +121,13 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
except Exception:
continue
existing_caption = None
try:
existing_caption = open(os.path.splitext(filename)[0] + '.txt', 'r').read()
except Exception as e:
print(e)
if shared.state.interrupted:
break
@ -124,9 +140,9 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
if process_split and ratio < 1.0 and ratio <= split_threshold:
for splitted in split_pic(img, inverse_xy):
save_pic(splitted, index)
save_pic(splitted, index, existing_caption=existing_caption)
else:
img = images.resize_image(1, img, width, height)
save_pic(img, index)
save_pic(img, index, existing_caption=existing_caption)
shared.state.nextjob()

View file

@ -153,7 +153,7 @@ class EmbeddingDatabase:
return None, None
def create_embedding(name, num_vectors_per_token, init_text='*'):
def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
cond_model = shared.sd_model.cond_stage_model
embedding_layer = cond_model.wrapped.transformer.text_model.embeddings
@ -165,7 +165,8 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists"
embedding = Embedding(vec, name)
embedding.step = 0
@ -275,6 +276,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
loss.backward()
optimizer.step()
epoch_num = embedding.step // len(ds)
epoch_step = embedding.step - (epoch_num * len(ds)) + 1

View file

@ -7,8 +7,8 @@ import modules.textual_inversion.preprocess
from modules import sd_hijack, shared
def create_embedding(name, initialization_text, nvpt):
filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, init_text=initialization_text)
def create_embedding(name, initialization_text, nvpt, overwrite_old):
filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, overwrite_old, init_text=initialization_text)
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()

View file

@ -1,12 +1,13 @@
import modules.scripts
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args):
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@ -35,6 +36,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
firstphase_height=firstphase_height if enable_hr else None,
)
shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
@ -53,4 +56,3 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info)

View file

@ -25,7 +25,9 @@ import gradio.routes
from modules import sd_hijack, sd_models, localization
from modules.paths import script_path
from modules.shared import opts, cmd_opts, restricted_opts
from modules.shared import opts, cmd_opts, restricted_opts, aesthetic_embeddings
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
import modules.shared as shared
@ -41,8 +43,11 @@ from modules import prompt_parser
from modules.images import save_image
import modules.textual_inversion.ui
import modules.hypernetworks.ui
import modules.aesthetic_clip as aesthetic_clip
import modules.images_history as img_his
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
mimetypes.add_type('application/javascript', '.js')
@ -592,27 +597,29 @@ def apply_setting(key, value):
return value
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh():
refresh_method()
args = refreshed_args() if callable(refreshed_args) else refreshed_args
for k, v in args.items():
setattr(refresh_component, k, v)
return gr.update(**(args or {}))
refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id)
refresh_button.click(
fn=refresh,
inputs=[],
outputs=[refresh_component]
)
return refresh_button
def create_ui(wrap_gradio_gpu_call):
import modules.img2img
import modules.txt2img
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh():
refresh_method()
args = refreshed_args() if callable(refreshed_args) else refreshed_args
for k, v in args.items():
setattr(refresh_component, k, v)
return gr.update(**(args or {}))
refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id)
refresh_button.click(
fn = refresh,
inputs = [],
outputs = [refresh_component]
)
return refresh_button
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
@ -655,6 +662,8 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative = aesthetic_clip.create_ui()
with gr.Group():
custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
@ -709,7 +718,16 @@ def create_ui(wrap_gradio_gpu_call):
denoising_strength,
firstphase_width,
firstphase_height,
aesthetic_lr,
aesthetic_weight,
aesthetic_steps,
aesthetic_imgs,
aesthetic_slerp,
aesthetic_imgs_text,
aesthetic_slerp_angle,
aesthetic_text_negative
] + custom_inputs,
outputs=[
txt2img_gallery,
generation_info,
@ -786,6 +804,14 @@ def create_ui(wrap_gradio_gpu_call):
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
(firstphase_width, "First pass size-1"),
(firstphase_height, "First pass size-2"),
(aesthetic_lr, "Aesthetic LR"),
(aesthetic_weight, "Aesthetic weight"),
(aesthetic_steps, "Aesthetic steps"),
(aesthetic_imgs, "Aesthetic embedding"),
(aesthetic_slerp, "Aesthetic slerp"),
(aesthetic_imgs_text, "Aesthetic text"),
(aesthetic_text_negative, "Aesthetic text negative"),
(aesthetic_slerp_angle, "Aesthetic slerp angle"),
]
txt2img_preview_params = [
@ -853,8 +879,8 @@ def create_ui(wrap_gradio_gpu_call):
sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index")
with gr.Group():
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512, elem_id="img2img_width")
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512, elem_id="img2img_height")
with gr.Row():
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
@ -870,6 +896,8 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
aesthetic_weight_im, aesthetic_steps_im, aesthetic_lr_im, aesthetic_slerp_im, aesthetic_imgs_im, aesthetic_imgs_text_im, aesthetic_slerp_angle_im, aesthetic_text_negative_im = aesthetic_clip.create_ui()
with gr.Group():
custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
@ -960,6 +988,14 @@ def create_ui(wrap_gradio_gpu_call):
inpainting_mask_invert,
img2img_batch_input_dir,
img2img_batch_output_dir,
aesthetic_lr_im,
aesthetic_weight_im,
aesthetic_steps_im,
aesthetic_imgs_im,
aesthetic_slerp_im,
aesthetic_imgs_text_im,
aesthetic_slerp_angle_im,
aesthetic_text_negative_im,
] + custom_inputs,
outputs=[
img2img_gallery,
@ -1051,6 +1087,14 @@ def create_ui(wrap_gradio_gpu_call):
(seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"),
(denoising_strength, "Denoising strength"),
(aesthetic_lr_im, "Aesthetic LR"),
(aesthetic_weight_im, "Aesthetic weight"),
(aesthetic_steps_im, "Aesthetic steps"),
(aesthetic_imgs_im, "Aesthetic embedding"),
(aesthetic_slerp_im, "Aesthetic slerp"),
(aesthetic_imgs_text_im, "Aesthetic text"),
(aesthetic_text_negative_im, "Aesthetic text negative"),
(aesthetic_slerp_angle_im, "Aesthetic slerp angle"),
]
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
@ -1211,6 +1255,7 @@ def create_ui(wrap_gradio_gpu_call):
new_embedding_name = gr.Textbox(label="Name")
initialization_text = gr.Textbox(label="Initialization text", value="*")
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1)
overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding")
with gr.Row():
with gr.Column(scale=3):
@ -1219,11 +1264,25 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
with gr.Tab(label="Create aesthetic images embedding"):
new_embedding_name_ae = gr.Textbox(label="Name")
process_src_ae = gr.Textbox(label='Source directory')
batch_ae = gr.Slider(minimum=1, maximum=1024, step=1, label="Batch size", value=256)
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
with gr.Column():
create_embedding_ae = gr.Button(value="Create images embedding", variant='primary')
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork")
new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu"])
with gr.Row():
with gr.Column(scale=3):
@ -1237,6 +1296,7 @@ def create_ui(wrap_gradio_gpu_call):
process_dst = gr.Textbox(label='Destination directory')
process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"])
with gr.Row():
process_flip = gr.Checkbox(label='Create flipped copies')
@ -1262,14 +1322,17 @@ def create_ui(wrap_gradio_gpu_call):
)
with gr.Tab(label="Train"):
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>")
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>")
with gr.Row():
train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name")
with gr.Row():
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()])
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name")
learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
with gr.Row():
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005")
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001")
batch_size = gr.Number(label='Batch size', value=1, precision=0)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
@ -1303,6 +1366,7 @@ def create_ui(wrap_gradio_gpu_call):
new_embedding_name,
initialization_text,
nvpt,
overwrite_old_embedding,
],
outputs=[
train_embedding_name,
@ -1311,13 +1375,30 @@ def create_ui(wrap_gradio_gpu_call):
]
)
create_embedding_ae.click(
fn=aesthetic_clip.generate_imgs_embd,
inputs=[
new_embedding_name_ae,
process_src_ae,
batch_ae
],
outputs=[
aesthetic_imgs,
aesthetic_imgs_im,
ti_output,
ti_outcome,
]
)
create_hypernetwork.click(
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
new_hypernetwork_name,
new_hypernetwork_sizes,
overwrite_old_hypernetwork,
new_hypernetwork_layer_structure,
new_hypernetwork_add_layer_norm,
new_hypernetwork_activation_func,
],
outputs=[
train_hypernetwork_name,
@ -1334,6 +1415,7 @@ def create_ui(wrap_gradio_gpu_call):
process_dst,
process_width,
process_height,
preprocess_txt_action,
process_flip,
process_split,
process_caption,
@ -1352,7 +1434,7 @@ def create_ui(wrap_gradio_gpu_call):
_js="start_training_textual_inversion",
inputs=[
train_embedding_name,
learn_rate,
embedding_learn_rate,
batch_size,
dataset_directory,
log_directory,
@ -1377,7 +1459,7 @@ def create_ui(wrap_gradio_gpu_call):
_js="start_training_textual_inversion",
inputs=[
train_hypernetwork_name,
learn_rate,
hypernetwork_learn_rate,
batch_size,
dataset_directory,
log_directory,

View file

@ -172,54 +172,54 @@ class Script(scripts.Script):
if down > 0:
down = target_h - init_img.height - up
init_image = p.init_images[0]
state.job_count = (1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0)
def expand(init, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
def expand(init, count, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
is_horiz = is_left or is_right
is_vert = is_top or is_bottom
pixels_horiz = expand_pixels if is_horiz else 0
pixels_vert = expand_pixels if is_vert else 0
res_w = init.width + pixels_horiz
res_h = init.height + pixels_vert
process_res_w = math.ceil(res_w / 64) * 64
process_res_h = math.ceil(res_h / 64) * 64
images_to_process = []
output_images = []
for n in range(count):
res_w = init[n].width + pixels_horiz
res_h = init[n].height + pixels_vert
process_res_w = math.ceil(res_w / 64) * 64
process_res_h = math.ceil(res_h / 64) * 64
img = Image.new("RGB", (process_res_w, process_res_h))
img.paste(init, (pixels_horiz if is_left else 0, pixels_vert if is_top else 0))
mask = Image.new("RGB", (process_res_w, process_res_h), "white")
draw = ImageDraw.Draw(mask)
draw.rectangle((
expand_pixels + mask_blur if is_left else 0,
expand_pixels + mask_blur if is_top else 0,
mask.width - expand_pixels - mask_blur if is_right else res_w,
mask.height - expand_pixels - mask_blur if is_bottom else res_h,
), fill="black")
img = Image.new("RGB", (process_res_w, process_res_h))
img.paste(init[n], (pixels_horiz if is_left else 0, pixels_vert if is_top else 0))
mask = Image.new("RGB", (process_res_w, process_res_h), "white")
draw = ImageDraw.Draw(mask)
draw.rectangle((
expand_pixels + mask_blur if is_left else 0,
expand_pixels + mask_blur if is_top else 0,
mask.width - expand_pixels - mask_blur if is_right else res_w,
mask.height - expand_pixels - mask_blur if is_bottom else res_h,
), fill="black")
np_image = (np.asarray(img) / 255.0).astype(np.float64)
np_mask = (np.asarray(mask) / 255.0).astype(np.float64)
noised = get_matched_noise(np_image, np_mask, noise_q, color_variation)
out = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB")
np_image = (np.asarray(img) / 255.0).astype(np.float64)
np_mask = (np.asarray(mask) / 255.0).astype(np.float64)
noised = get_matched_noise(np_image, np_mask, noise_q, color_variation)
output_images.append(Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB"))
target_width = min(process_width, init.width + pixels_horiz) if is_horiz else img.width
target_height = min(process_height, init.height + pixels_vert) if is_vert else img.height
target_width = min(process_width, init[n].width + pixels_horiz) if is_horiz else img.width
target_height = min(process_height, init[n].height + pixels_vert) if is_vert else img.height
p.width = target_width if is_horiz else img.width
p.height = target_height if is_vert else img.height
crop_region = (
0 if is_left else out.width - target_width,
0 if is_top else out.height - target_height,
target_width if is_left else out.width,
target_height if is_top else out.height,
)
crop_region = (
0 if is_left else output_images[n].width - target_width,
0 if is_top else output_images[n].height - target_height,
target_width if is_left else output_images[n].width,
target_height if is_top else output_images[n].height,
)
mask = mask.crop(crop_region)
p.image_mask = mask
image_to_process = out.crop(crop_region)
mask = mask.crop(crop_region)
image_to_process = output_images[n].crop(crop_region)
images_to_process.append(image_to_process)
p.width = target_width if is_horiz else img.width
p.height = target_height if is_vert else img.height
p.init_images = [image_to_process]
p.image_mask = mask
p.init_images = images_to_process
latent_mask = Image.new("RGB", (p.width, p.height), "white")
draw = ImageDraw.Draw(latent_mask)
@ -232,31 +232,52 @@ class Script(scripts.Script):
p.latent_mask = latent_mask
proc = process_images(p)
proc_img = proc.images[0]
if initial_seed_and_info[0] is None:
initial_seed_and_info[0] = proc.seed
initial_seed_and_info[1] = proc.info
out.paste(proc_img, (0 if is_left else out.width - proc_img.width, 0 if is_top else out.height - proc_img.height))
out = out.crop((0, 0, res_w, res_h))
return out
for n in range(count):
output_images[n].paste(proc.images[n], (0 if is_left else output_images[n].width - proc.images[n].width, 0 if is_top else output_images[n].height - proc.images[n].height))
output_images[n] = output_images[n].crop((0, 0, res_w, res_h))
img = init_image
return output_images
if left > 0:
img = expand(img, left, is_left=True)
if right > 0:
img = expand(img, right, is_right=True)
if up > 0:
img = expand(img, up, is_top=True)
if down > 0:
img = expand(img, down, is_bottom=True)
batch_count = p.n_iter
batch_size = p.batch_size
p.n_iter = 1
state.job_count = batch_count * ((1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0))
all_processed_images = []
res = Processed(p, [img], initial_seed_and_info[0], initial_seed_and_info[1])
for i in range(batch_count):
imgs = [init_img] * batch_size
state.job = f"Batch {i + 1} out of {batch_count}"
if left > 0:
imgs = expand(imgs, batch_size, left, is_left=True)
if right > 0:
imgs = expand(imgs, batch_size, right, is_right=True)
if up > 0:
imgs = expand(imgs, batch_size, up, is_top=True)
if down > 0:
imgs = expand(imgs, batch_size, down, is_bottom=True)
all_processed_images += imgs
all_images = all_processed_images
combined_grid_image = images.image_grid(all_processed_images)
unwanted_grid_because_of_img_count = len(all_processed_images) < 2 and opts.grid_only_if_multiple
if opts.return_grid and not unwanted_grid_because_of_img_count:
all_images = [combined_grid_image] + all_processed_images
res = Processed(p, all_images, initial_seed_and_info[0], initial_seed_and_info[1])
if opts.samples_save:
images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
for img in all_processed_images:
images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
if opts.grid_save and not unwanted_grid_because_of_img_count:
images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
return res

View file

@ -89,6 +89,7 @@ def apply_checkpoint(p, x, xs):
if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
modules.sd_models.reload_model_weights(shared.sd_model, info)
p.sd_model = shared.sd_model
def confirm_checkpoints(p, xs):

View file

@ -477,7 +477,7 @@ input[type="range"]{
padding: 0;
}
#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{
#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization, #refresh_aesthetic_embeddings{
max-width: 2.5em;
min-width: 2.5em;
height: 2.4em;

View file

@ -118,7 +118,8 @@ def api_only():
api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861)
def webui(launch_api=False):
def webui():
launch_api = cmd_opts.api
initialize()
while 1:
@ -158,4 +159,4 @@ if __name__ == "__main__":
if cmd_opts.nowebui:
api_only()
else:
webui(cmd_opts.api)
webui()