Merge remote-tracking branch 'origin/master'

This commit is contained in:
AUTOMATIC 2022-09-08 10:31:20 +03:00
commit 61785cef65
10 changed files with 68 additions and 14 deletions

View file

@ -14,8 +14,11 @@ import modules.images
def load_model(filename):
# this code is adapted from https://github.com/xinntao/ESRGAN
pretrained_net = torch.load(filename)
if torch.has_mps:
map_l = 'cpu'
else:
map_l = None
pretrained_net = torch.load(filename, map_location=map_l)
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
if 'conv_first.weight' in pretrained_net:

View file

@ -1,5 +1,7 @@
import math
from PIL import Image
import cv2
import numpy as np
from PIL import Image, ImageOps, ImageChops
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
@ -16,7 +18,9 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index
if is_inpaint:
image = init_img_with_mask['image']
mask = init_img_with_mask['mask']
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, init_img_with_mask['mask'].convert('L')).convert('RGBA')
image = image.convert('RGB')
else:
image = init_img
mask = None
@ -57,8 +61,19 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index
state.job_count = n_iter
do_color_correction = False
try:
from skimage import exposure
do_color_correction = True
except:
print("Install scikit-image to perform color correction on loopback")
for i in range(n_iter):
if do_color_correction and i == 0:
correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB)
p.n_iter = 1
p.batch_size = 1
p.do_not_save_grid = True
@ -70,7 +85,19 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index
initial_seed = processed.seed
initial_info = processed.info
p.init_images = [processed.images[0]]
init_img = processed.images[0]
if do_color_correction and correction_target is not None:
init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
cv2.cvtColor(
np.asarray(init_img),
cv2.COLOR_RGB2LAB
),
correction_target,
channel_axis=2
), cv2.COLOR_LAB2RGB).astype("uint8"))
p.init_images = [init_img]
p.seed = processed.seed + 1
p.denoising_strength = max(p.denoising_strength * 0.95, 0.1)
history.append(processed.images[0])

View file

@ -2,9 +2,12 @@ import torch
module_in_gpu = None
cpu = torch.device("cpu")
gpu = torch.device("cuda")
device = gpu if torch.cuda.is_available() else cpu
if torch.has_cuda:
device = gpu = torch.device("cuda")
elif torch.has_mps:
device = gpu = torch.device("mps")
else:
device = gpu = torch.device("cpu")
def setup_for_low_vram(sd_model, use_medvram):
parents = {}

View file

@ -232,7 +232,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
z = outputs.last_hidden_state
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
batch_multipliers = torch.asarray(np.array(batch_multipliers)).to(device)
batch_multipliers = torch.asarray(batch_multipliers).to(device)
original_mean = z.mean()
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
new_mean = z.mean()

View file

@ -36,9 +36,12 @@ parser.add_argument("--opt-split-attention", action='store_true', help="enable o
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
cmd_opts = parser.parse_args()
cpu = torch.device("cpu")
gpu = torch.device("cuda")
device = gpu if torch.cuda.is_available() else cpu
if torch.has_cuda:
device = torch.device("cuda")
elif torch.has_mps:
device = torch.device("mps")
else:
device = torch.device("cpu")
batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram

View file

@ -323,7 +323,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
with gr.Group():
switch_mode = gr.Radio(label='Mode', elem_id="img2img_mode", choices=['Redraw whole image', 'Inpaint a part of image', 'Loopback', 'SD upscale'], value='Redraw whole image', type="index", show_label=False)
init_img = gr.Image(label="Image for img2img", source="upload", interactive=True, type="pil")
init_img_with_mask = gr.Image(label="Image for inpainting with mask", elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", visible=False)
init_img_with_mask = gr.Image(label="Image for inpainting with mask", elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", visible=False, image_mode="RGBA")
resize_mode = gr.Radio(label="Resize mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize")
steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)

View file

@ -10,5 +10,6 @@ omegaconf
pytorch_lightning
diffusers
invisible-watermark
scikit-image
git+https://github.com/crowsonkb/k-diffusion.git
git+https://github.com/TencentARC/GFPGAN.git

View file

@ -8,3 +8,4 @@ torch
transformers==4.19.2
omegaconf==2.1.1
pytorch_lightning==1.7.2
scikit-image==0.19.2

View file

@ -172,3 +172,19 @@ function submit(){
}
return res
}
window.addEventListener('paste', e => {
const files = e.clipboardData.files;
if (!files || files.length !== 1) {
return;
}
if (!['image/png', 'image/gif', 'image/jpeg'].includes(files[0].type)) {
return;
}
[...gradioApp().querySelectorAll('input[type=file][accept="image/x-png,image/gif,image/jpeg"]')]
.filter(input => !input.matches('.\\!hidden input[type=file]'))
.forEach(input => {
input.files = files;
input.dispatchEvent(new Event('change'))
});
});

View file

@ -35,7 +35,7 @@ echo Unable to create venv in directory %VENV_DIR%
goto :show_stdout_stderr
:activate_venv
set PYTHON=%~dp0%VENV_DIR%\Scripts\Python.exe
set PYTHON="%~dp0%VENV_DIR%\Scripts\Python.exe"
%PYTHON% --version
echo venv %PYTHON%
goto :install_torch