Generalize SD torch load/save to implement safetensor merging compat
This commit is contained in:
parent
ac7ecd2d84
commit
637815632f
3 changed files with 1840 additions and 1826 deletions
|
@ -249,7 +249,7 @@ def run_pnginfo(image):
|
|||
return '', geninfo, info
|
||||
|
||||
|
||||
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name):
|
||||
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, save_as_safetensors, custom_name):
|
||||
def weighted_sum(theta0, theta1, alpha):
|
||||
return ((1 - alpha) * theta0) + (alpha * theta1)
|
||||
|
||||
|
@ -264,16 +264,16 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||
teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
|
||||
|
||||
print(f"Loading {primary_model_info.filename}...")
|
||||
primary_model = torch.load(primary_model_info.filename, map_location='cpu')
|
||||
primary_model = sd_models.torch_load(primary_model_info.filename, primary_model_info, map_override='cpu')
|
||||
theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
|
||||
|
||||
print(f"Loading {secondary_model_info.filename}...")
|
||||
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
|
||||
secondary_model = sd_models.torch_load(secondary_model_info.filename, primary_model_info, map_override='cpu')
|
||||
theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)
|
||||
|
||||
if teritary_model_info is not None:
|
||||
print(f"Loading {teritary_model_info.filename}...")
|
||||
teritary_model = torch.load(teritary_model_info.filename, map_location='cpu')
|
||||
teritary_model = sd_models.torch_load(teritary_model_info.filename, teritary_model_info, map_override='cpu')
|
||||
theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model)
|
||||
else:
|
||||
teritary_model = None
|
||||
|
@ -314,12 +314,13 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||
|
||||
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
||||
|
||||
filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
||||
filename = filename if custom_name == '' else (custom_name + '.ckpt')
|
||||
output_exttype = '.safetensors' if save_as_safetensors else '.ckpt'
|
||||
filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged' + output_exttype
|
||||
filename = filename if custom_name == '' else (custom_name + output_exttype)
|
||||
output_modelname = os.path.join(ckpt_dir, filename)
|
||||
|
||||
print(f"Saving to {output_modelname}...")
|
||||
torch.save(primary_model, output_modelname)
|
||||
sd_models.torch_save(primary_model, output_modelname)
|
||||
|
||||
sd_models.list_models()
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@ import sys
|
|||
import gc
|
||||
from collections import namedtuple
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from safetensors.torch import load_file, save_file
|
||||
import re
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
|
@ -143,6 +143,22 @@ def transform_checkpoint_dict_key(k):
|
|||
|
||||
return k
|
||||
|
||||
def torch_load(model_filename, model_info, map_override=None):
|
||||
map_override=shared.weight_load_location if not map_override else map_override
|
||||
if(checkpoint_types[model_info.exttype] == 'safetensors'):
|
||||
# safely load weights
|
||||
# TODO: safetensors supports zero copy fast load to gpu, see issue #684
|
||||
return load_file(model_filename, device=map_override)
|
||||
else:
|
||||
return torch.load(model_filename, map_location=map_override)
|
||||
|
||||
def torch_save(model, output_filename):
|
||||
basename, exttype = os.path.splitext(output_filename)
|
||||
if(checkpoint_types[exttype] == 'safetensors'):
|
||||
# [===== >] Reticulating brines...
|
||||
save_file(model, output_filename, metadata={"format": "pt"})
|
||||
else:
|
||||
torch.save(model, output_filename)
|
||||
|
||||
def get_state_dict_from_checkpoint(pl_sd):
|
||||
if "state_dict" in pl_sd:
|
||||
|
@ -175,12 +191,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
|||
# load from file
|
||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||
|
||||
if(checkpoint_types[checkpoint_info.exttype] == 'safetensors'):
|
||||
# safely load weights
|
||||
# TODO: safetensors supports zero copy fast load to gpu, see issue #684
|
||||
pl_sd = load_file(checkpoint_file, device=shared.weight_load_location)
|
||||
else:
|
||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
||||
pl_sd = torch_load(checkpoint_file, checkpoint_info)
|
||||
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
|
|
|
@ -1187,6 +1187,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3)
|
||||
interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method")
|
||||
save_as_half = gr.Checkbox(value=False, label="Save as float16")
|
||||
save_as_safetensors = gr.Checkbox(value=False, label="Save as safetensors format")
|
||||
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary')
|
||||
|
||||
with gr.Column(variant='panel'):
|
||||
|
@ -1699,6 +1700,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
interp_method,
|
||||
interp_amount,
|
||||
save_as_half,
|
||||
save_as_safetensors,
|
||||
custom_name,
|
||||
],
|
||||
outputs=[
|
||||
|
|
Loading…
Reference in a new issue