Added support for launching on Apple Silicon

This commit is contained in:
xeonvs 2022-09-07 15:58:25 +02:00
parent 15bb8e8057
commit 65fbefd033
4 changed files with 17 additions and 6 deletions

View file

@ -14,8 +14,11 @@ import modules.images
def load_model(filename): def load_model(filename):
# this code is adapted from https://github.com/xinntao/ESRGAN # this code is adapted from https://github.com/xinntao/ESRGAN
if torch.has_mps:
pretrained_net = torch.load(filename) map_l = 'cpu'
else:
map_l = None
pretrained_net = torch.load(filename, map_location=map_l)
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32) crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
if 'conv_first.weight' in pretrained_net: if 'conv_first.weight' in pretrained_net:

View file

@ -232,7 +232,10 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
z = outputs.last_hidden_state z = outputs.last_hidden_state
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
batch_multipliers = torch.asarray(np.array(batch_multipliers)).to(device) if torch.has_mps:
batch_multipliers = torch.asarray(np.array(batch_multipliers).astype('float32')).to(device)
else:
batch_multipliers = torch.asarray(np.array(batch_multipliers)).to(device)
original_mean = z.mean() original_mean = z.mean()
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
new_mean = z.mean() new_mean = z.mean()

View file

@ -36,9 +36,12 @@ parser.add_argument("--opt-split-attention", action='store_true', help="enable o
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests") parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
cmd_opts = parser.parse_args() cmd_opts = parser.parse_args()
cpu = torch.device("cpu") if torch.has_cuda:
gpu = torch.device("cuda") device = torch.device("cuda")
device = gpu if torch.cuda.is_available() else cpu elif torch.has_mps:
device = torch.device("mps")
else:
device = torch.device("cpu")
batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram

View file

@ -10,5 +10,7 @@ omegaconf
pytorch_lightning pytorch_lightning
diffusers diffusers
invisible-watermark invisible-watermark
einops
taming-transformers-rom1504
git+https://github.com/crowsonkb/k-diffusion.git git+https://github.com/crowsonkb/k-diffusion.git
git+https://github.com/TencentARC/GFPGAN.git git+https://github.com/TencentARC/GFPGAN.git