From cb31abcf58ea1f64266e6d821937eed058c35f4d Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 30 Oct 2022 21:54:31 +0700 Subject: [PATCH 1/8] Settings to select VAE --- modules/sd_models.py | 31 ++++------- modules/sd_vae.py | 121 +++++++++++++++++++++++++++++++++++++++++++ modules/shared.py | 8 +-- webui.py | 5 ++ 4 files changed, 141 insertions(+), 24 deletions(-) create mode 100644 modules/sd_vae.py diff --git a/modules/sd_models.py b/modules/sd_models.py index f86dc3ed..91ad4b5e 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -8,7 +8,7 @@ from omegaconf import OmegaConf from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks +from modules import shared, modelloader, devices, script_callbacks, sd_vae from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting @@ -160,12 +160,11 @@ def get_state_dict_from_checkpoint(pl_sd): vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} - -def load_model_weights(model, checkpoint_info): +def load_model_weights(model, checkpoint_info, force=False): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash - if checkpoint_info not in checkpoints_loaded: + if force or checkpoint_info not in checkpoints_loaded: print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) @@ -186,17 +185,7 @@ def load_model_weights(model, checkpoint_info): devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt" - - if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None: - vae_file = shared.cmd_opts.vae_path - - if os.path.exists(vae_file): - print(f"Loading VAE weights from: {vae_file}") - vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) - vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} - model.first_stage_model.load_state_dict(vae_dict) - + sd_vae.load_vae(model, checkpoint_file) model.first_stage_model.to(devices.dtype_vae) if shared.opts.sd_checkpoint_cache > 0: @@ -213,7 +202,7 @@ def load_model_weights(model, checkpoint_info): model.sd_checkpoint_info = checkpoint_info -def load_model(checkpoint_info=None): +def load_model(checkpoint_info=None, force=False): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() @@ -234,7 +223,7 @@ def load_model(checkpoint_info=None): do_inpainting_hijack() sd_model = instantiate_from_config(sd_config.model) - load_model_weights(sd_model, checkpoint_info) + load_model_weights(sd_model, checkpoint_info, force=force) if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) @@ -252,16 +241,16 @@ def load_model(checkpoint_info=None): return sd_model -def reload_model_weights(sd_model, info=None): +def reload_model_weights(sd_model, info=None, force=False): from modules import lowvram, devices, sd_hijack checkpoint_info = info or select_checkpoint() - if sd_model.sd_model_checkpoint == checkpoint_info.filename: + if sd_model.sd_model_checkpoint == checkpoint_info.filename and not force: return if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): checkpoints_loaded.clear() - load_model(checkpoint_info) + load_model(checkpoint_info, force=force) return shared.sd_model if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: @@ -271,7 +260,7 @@ def reload_model_weights(sd_model, info=None): sd_hijack.model_hijack.undo_hijack(sd_model) - load_model_weights(sd_model, checkpoint_info) + load_model_weights(sd_model, checkpoint_info, force=force) sd_hijack.model_hijack.hijack(sd_model) script_callbacks.model_loaded_callback(sd_model) diff --git a/modules/sd_vae.py b/modules/sd_vae.py new file mode 100644 index 00000000..82764e55 --- /dev/null +++ b/modules/sd_vae.py @@ -0,0 +1,121 @@ +import torch +import os +from collections import namedtuple +from modules import shared, devices +from modules.paths import models_path +import glob + +model_dir = "Stable-diffusion" +model_path = os.path.abspath(os.path.join(models_path, model_dir)) +vae_dir = "VAE" +vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) + +vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} +default_vae_dict = {"auto": "auto", "None": "None"} +default_vae_list = ["auto", "None"] +default_vae_values = [default_vae_dict[x] for x in default_vae_list] +vae_dict = dict(default_vae_dict) +vae_list = list(default_vae_list) +first_load = True + +def get_filename(filepath): + return os.path.splitext(os.path.basename(filepath))[0] + +def refresh_vae_list(vae_path=vae_path, model_path=model_path): + global vae_dict, vae_list + res = {} + candidates = [ + *glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True), + *glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True), + *glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True), + *glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True) + ] + if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path): + candidates.append(shared.cmd_opts.vae_path) + for filepath in candidates: + name = get_filename(filepath) + res[name] = filepath + vae_list.clear() + vae_list.extend(default_vae_list) + vae_list.extend(list(res.keys())) + vae_dict.clear() + vae_dict.update(default_vae_dict) + vae_dict.update(res) + return vae_list + +def load_vae(model, checkpoint_file, vae_file="auto"): + global first_load, vae_dict, vae_list + # save_settings = False + + # if vae_file argument is provided, it takes priority + if vae_file and vae_file not in default_vae_list: + if not os.path.isfile(vae_file): + vae_file = "auto" + # save_settings = True + print("VAE provided as function argument doesn't exist") + # for the first load, if vae-path is provided, it takes priority and failure is reported + if first_load and shared.cmd_opts.vae_path is not None: + if os.path.isfile(shared.cmd_opts.vae_path): + vae_file = shared.cmd_opts.vae_path + # save_settings = True + # print("Using VAE provided as command line argument") + else: + print("VAE provided as command line argument doesn't exist") + # else, we load from settings + if vae_file == "auto" and shared.opts.sd_vae is not None: + # if saved VAE settings isn't recognized, fallback to auto + vae_file = vae_dict.get(shared.opts.sd_vae, "auto") + # if VAE selected but not found, fallback to auto + if vae_file not in default_vae_values and not os.path.isfile(vae_file): + vae_file = "auto" + print("Selected VAE doesn't exist") + # vae-path cmd arg takes priority for auto + if vae_file == "auto" and shared.cmd_opts.vae_path is not None: + if os.path.isfile(shared.cmd_opts.vae_path): + vae_file = shared.cmd_opts.vae_path + print("Using VAE provided as command line argument") + # if still not found, try look for ".vae.pt" beside model + model_path = os.path.splitext(checkpoint_file)[0] + if vae_file == "auto": + vae_file_try = model_path + ".vae.pt" + if os.path.isfile(vae_file_try): + vae_file = vae_file_try + print("Using VAE found beside selected model") + # if still not found, try look for ".vae.ckpt" beside model + if vae_file == "auto": + vae_file_try = model_path + ".vae.ckpt" + if os.path.isfile(vae_file_try): + vae_file = vae_file_try + print("Using VAE found beside selected model") + # No more fallbacks for auto + if vae_file == "auto": + vae_file = None + # Last check, just because + if vae_file and not os.path.exists(vae_file): + vae_file = None + + if vae_file: + print(f"Loading VAE weights from: {vae_file}") + vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) + vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} + model.first_stage_model.load_state_dict(vae_dict_1) + + # If vae used is not in dict, update it + # It will be removed on refresh though + if vae_file is not None: + vae_opt = get_filename(vae_file) + if vae_opt not in vae_dict: + vae_dict[vae_opt] = vae_file + vae_list.append(vae_opt) + + """ + # Save current VAE to VAE settings, maybe? will it work? + if save_settings: + if vae_file is None: + vae_opt = "None" + + # shared.opts.sd_vae = vae_opt + """ + + first_load = False + model.first_stage_model.to(devices.dtype_vae) diff --git a/modules/shared.py b/modules/shared.py index e4f163c1..06440ac4 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -14,7 +14,7 @@ import modules.memmon import modules.sd_models import modules.styles import modules.devices as devices -from modules import sd_samplers, sd_models, localization +from modules import sd_samplers, sd_models, localization, sd_vae from modules.hypernetworks import hypernetwork from modules.paths import models_path, script_path, sd_path @@ -295,6 +295,7 @@ options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), + "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list), "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), @@ -407,11 +408,12 @@ class Options: if bad_settings > 0: print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr) - def onchange(self, key, func): + def onchange(self, key, func, call=True): item = self.data_labels.get(key) item.onchange = func - func() + if call: + func() def dumpjson(self): d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()} diff --git a/webui.py b/webui.py index 29530872..27949f3d 100644 --- a/webui.py +++ b/webui.py @@ -21,6 +21,7 @@ import modules.paths import modules.scripts import modules.sd_hijack import modules.sd_models +import modules.sd_vae import modules.shared as shared import modules.txt2img @@ -74,8 +75,12 @@ def initialize(): modules.scripts.load_scripts() + modules.sd_vae.refresh_vae_list() modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) + # I don't know what needs to be done to only reload VAE, with all those hijacks callbacks, and lowvram, + # so for now this reloads the whole model too, and no cache + shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model, force=True)), call=False) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) From 2468039df2c5705039a5c14fd74f1354093bf874 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 30 Oct 2022 21:58:31 +0700 Subject: [PATCH 2/8] Forgot to add this folder --- models/VAE/Put VAE here.txt | 0 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 models/VAE/Put VAE here.txt diff --git a/models/VAE/Put VAE here.txt b/models/VAE/Put VAE here.txt new file mode 100644 index 00000000..e69de29b From e1b2ea6e0012ecc988385fc523d8fb50ea5d6be5 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 30 Oct 2022 22:11:45 +0700 Subject: [PATCH 3/8] Change VAE search order and thus priority --- modules/sd_vae.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 82764e55..0767b925 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -25,10 +25,10 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): global vae_dict, vae_list res = {} candidates = [ - *glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True), *glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True), - *glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True), + *glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True), *glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True) + *glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True), ] if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path): candidates.append(shared.cmd_opts.vae_path) From b96d0c4e9ecec3c856b9b4ec795dbd0d34fcac51 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Mon, 31 Oct 2022 14:42:28 +0700 Subject: [PATCH 4/8] Fix typo from previous commit --- modules/sd_vae.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 0767b925..2ce44d5f 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -27,8 +27,8 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): candidates = [ *glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True), *glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True), - *glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True) - *glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True), + *glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True), + *glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True) ] if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path): candidates.append(shared.cmd_opts.vae_path) From 726769da35970f4c100fa7edf11850f9dc059c41 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Mon, 31 Oct 2022 15:19:34 +0700 Subject: [PATCH 5/8] Checkpoint cache by combination key of checkpoint and vae --- modules/sd_models.py | 27 ++++++++++++++++----------- modules/sd_vae.py | 8 +++++++- 2 files changed, 23 insertions(+), 12 deletions(-) diff --git a/modules/sd_models.py b/modules/sd_models.py index 91ad4b5e..850f7b7b 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -160,11 +160,15 @@ def get_state_dict_from_checkpoint(pl_sd): vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} -def load_model_weights(model, checkpoint_info, force=False): +def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash - if force or checkpoint_info not in checkpoints_loaded: + vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) + + checkpoint_key = (checkpoint_info, vae_file) + + if checkpoint_key not in checkpoints_loaded: print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) @@ -185,24 +189,25 @@ def load_model_weights(model, checkpoint_info, force=False): devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - sd_vae.load_vae(model, checkpoint_file) + sd_vae.load_vae(model, vae_file) model.first_stage_model.to(devices.dtype_vae) if shared.opts.sd_checkpoint_cache > 0: - checkpoints_loaded[checkpoint_info] = model.state_dict().copy() + checkpoints_loaded[checkpoint_key] = model.state_dict().copy() while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: checkpoints_loaded.popitem(last=False) # LRU else: - print(f"Loading weights [{sd_model_hash}] from cache") - checkpoints_loaded.move_to_end(checkpoint_info) - model.load_state_dict(checkpoints_loaded[checkpoint_info]) + vae_name = sd_vae.get_filename(vae_file) + print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache") + checkpoints_loaded.move_to_end(checkpoint_key) + model.load_state_dict(checkpoints_loaded[checkpoint_key]) model.sd_model_hash = sd_model_hash model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info -def load_model(checkpoint_info=None, force=False): +def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() @@ -223,7 +228,7 @@ def load_model(checkpoint_info=None, force=False): do_inpainting_hijack() sd_model = instantiate_from_config(sd_config.model) - load_model_weights(sd_model, checkpoint_info, force=force) + load_model_weights(sd_model, checkpoint_info) if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) @@ -250,7 +255,7 @@ def reload_model_weights(sd_model, info=None, force=False): if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): checkpoints_loaded.clear() - load_model(checkpoint_info, force=force) + load_model(checkpoint_info) return shared.sd_model if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: @@ -260,7 +265,7 @@ def reload_model_weights(sd_model, info=None, force=False): sd_hijack.model_hijack.undo_hijack(sd_model) - load_model_weights(sd_model, checkpoint_info, force=force) + load_model_weights(sd_model, checkpoint_info) sd_hijack.model_hijack.hijack(sd_model) script_callbacks.model_loaded_callback(sd_model) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 2ce44d5f..e9239326 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -43,7 +43,7 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): vae_dict.update(res) return vae_list -def load_vae(model, checkpoint_file, vae_file="auto"): +def resolve_vae(checkpoint_file, vae_file="auto"): global first_load, vae_dict, vae_list # save_settings = False @@ -94,6 +94,12 @@ def load_vae(model, checkpoint_file, vae_file="auto"): if vae_file and not os.path.exists(vae_file): vae_file = None + return vae_file + +def load_vae(model, vae_file): + global first_load, vae_dict, vae_list + # save_settings = False + if vae_file: print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) From 7c8c3715f552378cf81ad28f26fad92b37bd153d Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Mon, 31 Oct 2022 20:15:33 +0700 Subject: [PATCH 6/8] Fix VAE refresh button stretching out From https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/3986#issuecomment-1296990601 --- style.css | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/style.css b/style.css index 8b2211b1..c1b190e9 100644 --- a/style.css +++ b/style.css @@ -491,7 +491,7 @@ input[type="range"]{ padding: 0; } -#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{ +#refresh_sd_model_checkpoint, #refresh_sd_vae, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{ max-width: 2.5em; min-width: 2.5em; height: 2.4em; From 056f06d3738c267b1014e6e8e1ef5bd97af1fb45 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Wed, 2 Nov 2022 12:51:46 +0700 Subject: [PATCH 7/8] Reload VAE without reloading sd checkpoint --- modules/sd_models.py | 15 ++++--- modules/sd_vae.py | 97 ++++++++++++++++++++++++++++++++++++++++---- webui.py | 4 +- 3 files changed, 98 insertions(+), 18 deletions(-) diff --git a/modules/sd_models.py b/modules/sd_models.py index 6ab85b65..883639d1 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -159,15 +159,13 @@ def get_state_dict_from_checkpoint(pl_sd): return pl_sd -vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} - def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) - checkpoint_key = (checkpoint_info, vae_file) + checkpoint_key = checkpoint_info if checkpoint_key not in checkpoints_loaded: print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") @@ -190,13 +188,12 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - sd_vae.load_vae(model, vae_file) - model.first_stage_model.to(devices.dtype_vae) - if shared.opts.sd_checkpoint_cache > 0: + # if PR #4035 were to get merged, restore base VAE first before caching checkpoints_loaded[checkpoint_key] = model.state_dict().copy() while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: checkpoints_loaded.popitem(last=False) # LRU + else: vae_name = sd_vae.get_filename(vae_file) print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache") @@ -207,6 +204,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + sd_vae.load_vae(model, vae_file) + def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack @@ -254,14 +253,14 @@ def load_model(checkpoint_info=None): return sd_model -def reload_model_weights(sd_model=None, info=None, force=False): +def reload_model_weights(sd_model=None, info=None): from modules import lowvram, devices, sd_hijack checkpoint_info = info or select_checkpoint() if not sd_model: sd_model = shared.sd_model - if sd_model.sd_model_checkpoint == checkpoint_info.filename and not force: + if sd_model.sd_model_checkpoint == checkpoint_info.filename: return if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): diff --git a/modules/sd_vae.py b/modules/sd_vae.py index e9239326..78e14e8a 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -1,26 +1,65 @@ import torch import os from collections import namedtuple -from modules import shared, devices +from modules import shared, devices, script_callbacks from modules.paths import models_path import glob + model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) vae_dir = "VAE" vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) + vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} + + default_vae_dict = {"auto": "auto", "None": "None"} default_vae_list = ["auto", "None"] + + default_vae_values = [default_vae_dict[x] for x in default_vae_list] vae_dict = dict(default_vae_dict) vae_list = list(default_vae_list) first_load = True + +base_vae = None +loaded_vae_file = None +checkpoint_info = None + + +def get_base_vae(model): + if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model: + return base_vae + return None + + +def store_base_vae(model): + global base_vae, checkpoint_info + if checkpoint_info != model.sd_checkpoint_info: + base_vae = model.first_stage_model.state_dict().copy() + checkpoint_info = model.sd_checkpoint_info + + +def delete_base_vae(): + global base_vae, checkpoint_info + base_vae = None + checkpoint_info = None + + +def restore_base_vae(model): + global base_vae, checkpoint_info + if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: + load_vae_dict(model, base_vae) + delete_base_vae() + + def get_filename(filepath): return os.path.splitext(os.path.basename(filepath))[0] + def refresh_vae_list(vae_path=vae_path, model_path=model_path): global vae_dict, vae_list res = {} @@ -43,6 +82,7 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): vae_dict.update(res) return vae_list + def resolve_vae(checkpoint_file, vae_file="auto"): global first_load, vae_dict, vae_list # save_settings = False @@ -96,24 +136,26 @@ def resolve_vae(checkpoint_file, vae_file="auto"): return vae_file -def load_vae(model, vae_file): - global first_load, vae_dict, vae_list + +def load_vae(model, vae_file=None): + global first_load, vae_dict, vae_list, loaded_vae_file # save_settings = False if vae_file: print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} - model.first_stage_model.load_state_dict(vae_dict_1) + load_vae_dict(model, vae_dict_1) - # If vae used is not in dict, update it - # It will be removed on refresh though - if vae_file is not None: + # If vae used is not in dict, update it + # It will be removed on refresh though vae_opt = get_filename(vae_file) if vae_opt not in vae_dict: vae_dict[vae_opt] = vae_file vae_list.append(vae_opt) + loaded_vae_file = vae_file + """ # Save current VAE to VAE settings, maybe? will it work? if save_settings: @@ -124,4 +166,45 @@ def load_vae(model, vae_file): """ first_load = False + + +# don't call this from outside +def load_vae_dict(model, vae_dict_1=None): + if vae_dict_1: + store_base_vae(model) + model.first_stage_model.load_state_dict(vae_dict_1) + else: + restore_base_vae() model.first_stage_model.to(devices.dtype_vae) + + +def reload_vae_weights(sd_model=None, vae_file="auto"): + from modules import lowvram, devices, sd_hijack + + if not sd_model: + sd_model = shared.sd_model + + checkpoint_info = sd_model.sd_checkpoint_info + checkpoint_file = checkpoint_info.filename + vae_file = resolve_vae(checkpoint_file, vae_file=vae_file) + + if loaded_vae_file == vae_file: + return + + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.send_everything_to_cpu() + else: + sd_model.to(devices.cpu) + + sd_hijack.model_hijack.undo_hijack(sd_model) + + load_vae(sd_model, vae_file) + + sd_hijack.model_hijack.hijack(sd_model) + script_callbacks.model_loaded_callback(sd_model) + + if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: + sd_model.to(devices.device) + + print(f"VAE Weights loaded.") + return sd_model diff --git a/webui.py b/webui.py index 7cb4691b..034777a2 100644 --- a/webui.py +++ b/webui.py @@ -81,9 +81,7 @@ def initialize(): modules.sd_vae.refresh_vae_list() modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) - # I don't know what needs to be done to only reload VAE, with all those hijacks callbacks, and lowvram, - # so for now this reloads the whole model too - shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(force=True)), call=False) + shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) From a5409a6e4bc3eaa9757a7505d4564ad8e0d899ea Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Wed, 2 Nov 2022 14:37:22 +0700 Subject: [PATCH 8/8] Save VAE provided by cmd_opts.vae_path --- modules/sd_vae.py | 11 ++++------- 1 file changed, 4 insertions(+), 7 deletions(-) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 78e14e8a..71e7a6e6 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -78,27 +78,24 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): vae_list.extend(default_vae_list) vae_list.extend(list(res.keys())) vae_dict.clear() - vae_dict.update(default_vae_dict) vae_dict.update(res) + vae_dict.update(default_vae_dict) return vae_list def resolve_vae(checkpoint_file, vae_file="auto"): global first_load, vae_dict, vae_list - # save_settings = False - # if vae_file argument is provided, it takes priority + # if vae_file argument is provided, it takes priority, but not saved if vae_file and vae_file not in default_vae_list: if not os.path.isfile(vae_file): vae_file = "auto" - # save_settings = True print("VAE provided as function argument doesn't exist") - # for the first load, if vae-path is provided, it takes priority and failure is reported + # for the first load, if vae-path is provided, it takes priority, saved, and failure is reported if first_load and shared.cmd_opts.vae_path is not None: if os.path.isfile(shared.cmd_opts.vae_path): vae_file = shared.cmd_opts.vae_path - # save_settings = True - # print("Using VAE provided as command line argument") + shared.opts.data['sd_vae'] = get_filename(vae_file) else: print("VAE provided as command line argument doesn't exist") # else, we load from settings