Merge pull request #5586 from wywywywy/ldsr-improvements

LDSR improvements - cache / optimization / opt_channelslast
This commit is contained in:
AUTOMATIC1111 2022-12-10 18:22:39 +03:00 committed by GitHub
commit 685f9631b5
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 34 additions and 14 deletions

View file

@ -11,25 +11,41 @@ from omegaconf import OmegaConf
from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config, ismap from ldm.util import instantiate_from_config, ismap
from modules import shared, sd_hijack
warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=UserWarning)
cached_ldsr_model: torch.nn.Module = None
# Create LDSR Class # Create LDSR Class
class LDSR: class LDSR:
def load_model_from_config(self, half_attention): def load_model_from_config(self, half_attention):
global cached_ldsr_model
if shared.opts.ldsr_cached and cached_ldsr_model is not None:
print(f"Loading model from cache")
model: torch.nn.Module = cached_ldsr_model
else:
print(f"Loading model from {self.modelPath}") print(f"Loading model from {self.modelPath}")
pl_sd = torch.load(self.modelPath, map_location="cpu") pl_sd = torch.load(self.modelPath, map_location="cpu")
sd = pl_sd["state_dict"] sd = pl_sd["state_dict"]
config = OmegaConf.load(self.yamlPath) config = OmegaConf.load(self.yamlPath)
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1" config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
model = instantiate_from_config(config.model) model: torch.nn.Module = instantiate_from_config(config.model)
model.load_state_dict(sd, strict=False) model.load_state_dict(sd, strict=False)
model.cuda() model = model.to(shared.device)
if half_attention: if half_attention:
model = model.half() model = model.half()
if shared.cmd_opts.opt_channelslast:
model = model.to(memory_format=torch.channels_last)
sd_hijack.model_hijack.hijack(model) # apply optimization
model.eval() model.eval()
if shared.opts.ldsr_cached:
cached_ldsr_model = model
return {"model": model} return {"model": model}
def __init__(self, model_path, yaml_path): def __init__(self, model_path, yaml_path):
@ -94,6 +110,7 @@ class LDSR:
down_sample_method = 'Lanczos' down_sample_method = 'Lanczos'
gc.collect() gc.collect()
if torch.cuda.is_available:
torch.cuda.empty_cache() torch.cuda.empty_cache()
im_og = image im_og = image
@ -131,7 +148,9 @@ class LDSR:
del model del model
gc.collect() gc.collect()
if torch.cuda.is_available:
torch.cuda.empty_cache() torch.cuda.empty_cache()
return a return a
@ -146,7 +165,7 @@ def get_cond(selected_path):
c = rearrange(c, '1 c h w -> 1 h w c') c = rearrange(c, '1 c h w -> 1 h w c')
c = 2. * c - 1. c = 2. * c - 1.
c = c.to(torch.device("cuda")) c = c.to(shared.device)
example["LR_image"] = c example["LR_image"] = c
example["image"] = c_up example["image"] = c_up

View file

@ -59,6 +59,7 @@ def on_ui_settings():
import gradio as gr import gradio as gr
shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling"))) shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling")))
shared.opts.add_option("ldsr_cached", shared.OptionInfo(False, "Cache LDSR model in memory", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")))
script_callbacks.on_ui_settings(on_ui_settings) script_callbacks.on_ui_settings(on_ui_settings)