Merge pull request #2 from aria1th/patch-6
generalized some functions and option for ignoring first layer
This commit is contained in:
commit
6a02841fff
1 changed files with 15 additions and 8 deletions
|
@ -21,6 +21,8 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
|||
|
||||
class HypernetworkModule(torch.nn.Module):
|
||||
multiplier = 1.0
|
||||
activation_dict = {"relu": torch.nn.ReLU, "leakyrelu": torch.nn.LeakyReLU, "elu": torch.nn.ELU,
|
||||
"swish": torch.nn.Hardswish}
|
||||
|
||||
def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None):
|
||||
super().__init__()
|
||||
|
@ -32,10 +34,14 @@ class HypernetworkModule(torch.nn.Module):
|
|||
linears = []
|
||||
for i in range(len(layer_structure) - 1):
|
||||
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
||||
if activation_func == "relu":
|
||||
linears.append(torch.nn.ReLU())
|
||||
if activation_func == "leakyrelu":
|
||||
linears.append(torch.nn.LeakyReLU())
|
||||
# if skip_first_layer because first parameters potentially contain negative values
|
||||
# if i < 1: continue
|
||||
if activation_func in HypernetworkModule.activation_dict:
|
||||
linears.append(HypernetworkModule.activation_dict[activation_func]())
|
||||
else:
|
||||
print("Invalid key {} encountered as activation function!".format(activation_func))
|
||||
# if use_dropout:
|
||||
# linears.append(torch.nn.Dropout(p=0.3))
|
||||
if add_layer_norm:
|
||||
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
||||
|
||||
|
@ -46,7 +52,7 @@ class HypernetworkModule(torch.nn.Module):
|
|||
self.load_state_dict(state_dict)
|
||||
else:
|
||||
for layer in self.linear:
|
||||
if not "ReLU" in layer.__str__():
|
||||
if isinstance(layer, torch.nn.Linear):
|
||||
layer.weight.data.normal_(mean=0.0, std=0.01)
|
||||
layer.bias.data.zero_()
|
||||
|
||||
|
@ -74,7 +80,7 @@ class HypernetworkModule(torch.nn.Module):
|
|||
def trainables(self):
|
||||
layer_structure = []
|
||||
for layer in self.linear:
|
||||
if not "ReLU" in layer.__str__():
|
||||
if isinstance(layer, torch.nn.Linear):
|
||||
layer_structure += [layer.weight, layer.bias]
|
||||
return layer_structure
|
||||
|
||||
|
@ -298,6 +304,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
return hypernetwork, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
|
||||
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
||||
|
|
Loading…
Reference in a new issue