Move browser and Inspiration into extension

This commit is contained in:
yfszzx 2022-10-23 16:17:37 +08:00
commit 6a9ea40d7f
40 changed files with 2713 additions and 574 deletions

View file

@ -45,6 +45,8 @@ body:
attributes: attributes:
label: Commit where the problem happens label: Commit where the problem happens
description: Which commit are you running ? (copy the **Commit hash** shown in the cmd/terminal when you launch the UI) description: Which commit are you running ? (copy the **Commit hash** shown in the cmd/terminal when you launch the UI)
validations:
required: true
- type: dropdown - type: dropdown
id: platforms id: platforms
attributes: attributes:

5
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View file

@ -0,0 +1,5 @@
blank_issues_enabled: false
contact_links:
- name: WebUI Community Support
url: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions
about: Please ask and answer questions here.

4
.gitignore vendored
View file

@ -28,4 +28,6 @@ notification.mp3
/SwinIR /SwinIR
/textual_inversion /textual_inversion
.vscode .vscode
/inspiration /extensions
/inspiration

View file

@ -11,6 +11,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- One click install and run script (but you still must install python and git) - One click install and run script (but you still must install python and git)
- Outpainting - Outpainting
- Inpainting - Inpainting
- Color Sketch
- Prompt Matrix - Prompt Matrix
- Stable Diffusion Upscale - Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to - Attention, specify parts of text that the model should pay more attention to
@ -23,6 +24,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- have as many embeddings as you want and use any names you like for them - have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token - use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers - works with half precision floating point numbers
- train embeddings on 8GB (also reports of 6GB working)
- Extras tab with: - Extras tab with:
- GFPGAN, neural network that fixes faces - GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN - CodeFormer, face restoration tool as an alternative to GFPGAN
@ -37,14 +39,14 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- Interrupt processing at any time - Interrupt processing at any time
- 4GB video card support (also reports of 2GB working) - 4GB video card support (also reports of 2GB working)
- Correct seeds for batches - Correct seeds for batches
- Prompt length validation - Live prompt token length validation
- get length of prompt in tokens as you type
- get a warning after generation if some text was truncated
- Generation parameters - Generation parameters
- parameters you used to generate images are saved with that image - parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG - in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI - can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings - can be disabled in settings
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page - Settings page
- Running arbitrary python code from UI (must run with --allow-code to enable) - Running arbitrary python code from UI (must run with --allow-code to enable)
- Mouseover hints for most UI elements - Mouseover hints for most UI elements
@ -59,10 +61,10 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- CLIP interrogator, a button that tries to guess prompt from an image - CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway - Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img - Batch Processing, process a group of files using img2img
- Img2img Alternative - Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions - Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly - Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge two checkpoints into one - Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community - [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once - [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND` - separate prompts using uppercase `AND`
@ -70,14 +72,35 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args) - DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args) - [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- History tab: view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
- hypernetworks and embeddings options
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
- Clip skip
- Use Hypernetworks
- Use VAEs
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
## Where are Aesthetic Gradients?!?!
Aesthetic Gradients are now an extension. You can install it using git:
```commandline
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients extensions/aesthetic-gradients
```
After running this command, make sure that you have `aesthetic-gradients` dir in webui's `extensions` directory and restart
the UI. The interface for Aesthetic Gradients should appear exactly the same as it was.
## Installation and Running ## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
Alternatively, use Google Colab: Alternatively, use online services (like Google Colab):
- [Colab, maintained by Akaibu](https://colab.research.google.com/drive/1kw3egmSn-KgWsikYvOMjJkVDsPLjEMzl) - [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
- [Colab, original by me, outdated](https://colab.research.google.com/drive/1Iy-xW9t1-OQWhb0hNxueGij8phCyluOh).
### Automatic Installation on Windows ### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH" 1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"

View file

@ -3,12 +3,12 @@ let currentWidth = null;
let currentHeight = null; let currentHeight = null;
let arFrameTimeout = setTimeout(function(){},0); let arFrameTimeout = setTimeout(function(){},0);
function dimensionChange(e,dimname){ function dimensionChange(e, is_width, is_height){
if(dimname == 'Width'){ if(is_width){
currentWidth = e.target.value*1.0 currentWidth = e.target.value*1.0
} }
if(dimname == 'Height'){ if(is_height){
currentHeight = e.target.value*1.0 currentHeight = e.target.value*1.0
} }
@ -18,22 +18,13 @@ function dimensionChange(e,dimname){
return; return;
} }
var img2imgMode = gradioApp().querySelector('#mode_img2img.tabs > div > button.rounded-t-lg.border-gray-200')
if(img2imgMode){
img2imgMode=img2imgMode.innerText
}else{
return;
}
var redrawImage = gradioApp().querySelector('div[data-testid=image] img');
var inpaintImage = gradioApp().querySelector('#img2maskimg div[data-testid=image] img')
var targetElement = null; var targetElement = null;
if(img2imgMode=='img2img' && redrawImage){ var tabIndex = get_tab_index('mode_img2img')
targetElement = redrawImage; if(tabIndex == 0){
}else if(img2imgMode=='Inpaint' && inpaintImage){ targetElement = gradioApp().querySelector('div[data-testid=image] img');
targetElement = inpaintImage; } else if(tabIndex == 1){
targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img');
} }
if(targetElement){ if(targetElement){
@ -99,21 +90,19 @@ onUiUpdate(function(){
if(inImg2img){ if(inImg2img){
let inputs = gradioApp().querySelectorAll('input'); let inputs = gradioApp().querySelectorAll('input');
inputs.forEach(function(e){ inputs.forEach(function(e){
let parentLabel = e.parentElement.querySelector('label') var is_width = e.parentElement.id == "img2img_width"
if(parentLabel && parentLabel.innerText){ var is_height = e.parentElement.id == "img2img_height"
if(!e.classList.contains('scrollwatch')){
if(parentLabel.innerText == 'Width' || parentLabel.innerText == 'Height'){ if((is_width || is_height) && !e.classList.contains('scrollwatch')){
e.addEventListener('input', function(e){dimensionChange(e,parentLabel.innerText)} ) e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} )
e.classList.add('scrollwatch') e.classList.add('scrollwatch')
} }
if(parentLabel.innerText == 'Width'){ if(is_width){
currentWidth = e.value*1.0 currentWidth = e.value*1.0
} }
if(parentLabel.innerText == 'Height'){ if(is_height){
currentHeight = e.value*1.0 currentHeight = e.value*1.0
} }
}
}
}) })
} }
}); });

View file

@ -43,7 +43,7 @@ function dropReplaceImage( imgWrap, files ) {
window.document.addEventListener('dragover', e => { window.document.addEventListener('dragover', e => {
const target = e.composedPath()[0]; const target = e.composedPath()[0];
const imgWrap = target.closest('[data-testid="image"]'); const imgWrap = target.closest('[data-testid="image"]');
if ( !imgWrap && target.placeholder.indexOf("Prompt") == -1) { if ( !imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) {
return; return;
} }
e.stopPropagation(); e.stopPropagation();

View file

@ -17,14 +17,6 @@ var images_history_click_image = function(){
images_history_set_image_info(this); images_history_set_image_info(this);
} }
var images_history_click_tab = function(){
var tabs_box = gradioApp().getElementById("images_history_tab");
if (!tabs_box.classList.contains(this.getAttribute("tabname"))) {
gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_renew_page").click();
tabs_box.classList.add(this.getAttribute("tabname"))
}
}
function images_history_disabled_del(){ function images_history_disabled_del(){
gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){ gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){
btn.setAttribute('disabled','disabled'); btn.setAttribute('disabled','disabled');
@ -43,7 +35,6 @@ function images_history_get_parent_by_tagname(item, tagname){
var parent = item.parentElement; var parent = item.parentElement;
tagname = tagname.toUpperCase() tagname = tagname.toUpperCase()
while(parent.tagName != tagname){ while(parent.tagName != tagname){
console.log(parent.tagName, tagname)
parent = parent.parentElement; parent = parent.parentElement;
} }
return parent; return parent;
@ -88,15 +79,15 @@ function images_history_set_image_info(button){
} }
function images_history_get_current_img(tabname, image_path, files){ function images_history_get_current_img(tabname, img_index, files){
return [ return [
tabname,
gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"), gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"),
image_path,
files files
]; ];
} }
function images_history_delete(del_num, tabname, img_path, img_file_name, page_index, filenames, image_index){ function images_history_delete(del_num, tabname, image_index){
image_index = parseInt(image_index); image_index = parseInt(image_index);
var tab = gradioApp().getElementById(tabname + '_images_history'); var tab = gradioApp().getElementById(tabname + '_images_history');
var set_btn = tab.querySelector(".images_history_set_index"); var set_btn = tab.querySelector(".images_history_set_index");
@ -107,6 +98,7 @@ function images_history_delete(del_num, tabname, img_path, img_file_name, page_i
} }
}); });
var img_num = buttons.length / 2; var img_num = buttons.length / 2;
del_num = Math.min(img_num - image_index, del_num)
if (img_num <= del_num){ if (img_num <= del_num){
setTimeout(function(tabname){ setTimeout(function(tabname){
gradioApp().getElementById(tabname + '_images_history_renew_page').click(); gradioApp().getElementById(tabname + '_images_history_renew_page').click();
@ -114,30 +106,28 @@ function images_history_delete(del_num, tabname, img_path, img_file_name, page_i
} else { } else {
var next_img var next_img
for (var i = 0; i < del_num; i++){ for (var i = 0; i < del_num; i++){
if (image_index + i < image_index + img_num){
buttons[image_index + i].style.display = 'none'; buttons[image_index + i].style.display = 'none';
buttons[image_index + img_num + 1].style.display = 'none'; buttons[image_index + i + img_num].style.display = 'none';
next_img = image_index + i + 1 next_img = image_index + i + 1
} }
}
var bnt; var bnt;
if (next_img >= img_num){ if (next_img >= img_num){
btn = buttons[image_index - del_num]; btn = buttons[image_index - 1];
} else { } else {
btn = buttons[next_img]; btn = buttons[next_img];
} }
setTimeout(function(btn){btn.click()}, 30, btn); setTimeout(function(btn){btn.click()}, 30, btn);
} }
images_history_disabled_del(); images_history_disabled_del();
return [del_num, tabname, img_path, img_file_name, page_index, filenames, image_index];
} }
function images_history_turnpage(img_path, page_index, image_index, tabname){ function images_history_turnpage(tabname){
gradioApp().getElementById(tabname + '_images_history_del_button').setAttribute('disabled','disabled');
var buttons = gradioApp().getElementById(tabname + '_images_history').querySelectorAll(".gallery-item"); var buttons = gradioApp().getElementById(tabname + '_images_history').querySelectorAll(".gallery-item");
buttons.forEach(function(elem) { buttons.forEach(function(elem) {
elem.style.display = 'block'; elem.style.display = 'block';
}) })
return [img_path, page_index, image_index, tabname];
} }
function images_history_enable_del_buttons(){ function images_history_enable_del_buttons(){
@ -147,40 +137,46 @@ function images_history_enable_del_buttons(){
} }
function images_history_init(){ function images_history_init(){
var load_txt2img_button = gradioApp().getElementById('txt2img_images_history_renew_page') var tabnames = gradioApp().getElementById("images_history_tabnames_list")
if (load_txt2img_button){ if (tabnames){
images_history_tab_list = tabnames.querySelector("textarea").value.split(",")
for (var i in images_history_tab_list ){ for (var i in images_history_tab_list ){
tab = images_history_tab_list[i]; var tab = images_history_tab_list[i];
gradioApp().getElementById(tab + '_images_history').classList.add("images_history_cantainor"); gradioApp().getElementById(tab + '_images_history').classList.add("images_history_cantainor");
gradioApp().getElementById(tab + '_images_history_set_index').classList.add("images_history_set_index"); gradioApp().getElementById(tab + '_images_history_set_index').classList.add("images_history_set_index");
gradioApp().getElementById(tab + '_images_history_del_button').classList.add("images_history_del_button"); gradioApp().getElementById(tab + '_images_history_del_button').classList.add("images_history_del_button");
gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery"); gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery");
gradioApp().getElementById(tab + "_images_history_start").setAttribute("style","padding:20px;font-size:25px");
} }
//preload
if (gradioApp().getElementById("images_history_preload").querySelector("input").checked ){
var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div"); var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div");
tabs_box.setAttribute("id", "images_history_tab"); tabs_box.setAttribute("id", "images_history_tab");
var tab_btns = tabs_box.querySelectorAll("button"); var tab_btns = tabs_box.querySelectorAll("button");
for (var i in images_history_tab_list){ for (var i in images_history_tab_list){
var tabname = images_history_tab_list[i] var tabname = images_history_tab_list[i]
tab_btns[i].setAttribute("tabname", tabname); tab_btns[i].setAttribute("tabname", tabname);
tab_btns[i].addEventListener('click', function(){
// this refreshes history upon tab switch var tabs_box = gradioApp().getElementById("images_history_tab");
// until the history is known to work well, which is not the case now, we do not do this at startup if (!tabs_box.classList.contains(this.getAttribute("tabname"))) {
//tab_btns[i].addEventListener('click', images_history_click_tab); gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_start").click();
tabs_box.classList.add(this.getAttribute("tabname"))
}
});
}
tab_btns[0].click()
} }
tabs_box.classList.add(images_history_tab_list[0]);
// same as above, at page load
//load_txt2img_button.click();
} else { } else {
setTimeout(images_history_init, 500); setTimeout(images_history_init, 500);
} }
} }
var images_history_tab_list = ["txt2img", "img2img", "extras"]; var images_history_tab_list = "";
setTimeout(images_history_init, 500); setTimeout(images_history_init, 500);
document.addEventListener("DOMContentLoaded", function() { document.addEventListener("DOMContentLoaded", function() {
var mutationObserver = new MutationObserver(function(m){ var mutationObserver = new MutationObserver(function(m){
if (images_history_tab_list != ""){
for (var i in images_history_tab_list ){ for (var i in images_history_tab_list ){
let tabname = images_history_tab_list[i] let tabname = images_history_tab_list[i]
var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item'); var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item');
@ -188,19 +184,17 @@ document.addEventListener("DOMContentLoaded", function() {
bnt.addEventListener('click', images_history_click_image, true); bnt.addEventListener('click', images_history_click_image, true);
}); });
// same as load_txt2img_button.click() above
/*
var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg"); var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg");
if (cls_btn){ if (cls_btn){
cls_btn.addEventListener('click', function(){ cls_btn.addEventListener('click', function(){
gradioApp().getElementById(tabname + '_images_history_renew_page').click(); gradioApp().getElementById(tabname + '_images_history_renew_page').click();
}, false); }, false);
}*/ }
} }
}
}); });
mutationObserver.observe( gradioApp(), { childList:true, subtree:true }); mutationObserver.observe(gradioApp(), { childList:true, subtree:true });
}); });

413
localizations/ja_JP.json Normal file
View file

@ -0,0 +1,413 @@
{
"⤡": "⤡",
"⊞": "⊞",
"×": "×",
"": "",
"": "",
"Loading...": "読み込み中...",
"view": "view",
"api": "api",
"•": "•",
"gradioで作ろう": "gradioで作ろう",
"Stable Diffusion checkpoint": "Stable Diffusion checkpoint",
"txt2img": "txt2img",
"img2img": "img2img",
"Extras": "その他",
"PNG Info": "PNG内の情報を表示",
"History": "履歴",
"Checkpoint Merger": "Checkpointの統合",
"Train": "学習",
"Settings": "設定",
"Prompt": "プロンプト",
"Negative prompt": "ネガティブ プロンプト",
"Run": "実行",
"Skip": "スキップ",
"Interrupt": "中断",
"Generate": "生成!",
"Style 1": "スタイル 1",
"Style 2": "スタイル 2",
"Label": "ラベル",
"File": "ファイル",
"ここにファイルをドロップ": "ここにファイルをドロップ",
"-": "-",
"または": "または",
"クリックしてアップロード": "クリックしてアップロード",
"Image": "画像",
"Check progress": "Check progress",
"Check progress (first)": "Check progress (first)",
"Sampling Steps": "サンプリング回数",
"Sampling method": "サンプリングアルゴリズム",
"Euler a": "Euler a",
"Euler": "Euler",
"LMS": "LMS",
"Heun": "Heun",
"DPM2": "DPM2",
"DPM2 a": "DPM2 a",
"DPM fast": "DPM fast",
"DPM adaptive": "DPM adaptive",
"LMS Karras": "LMS Karras",
"DPM2 Karras": "DPM2 Karras",
"DPM2 a Karras": "DPM2 a Karras",
"DDIM": "DDIM",
"PLMS": "PLMS",
"Width": "幅",
"Height": "高さ",
"Restore faces": "顔修復",
"Tiling": "テクスチャ生成モード",
"Highres. fix": "高解像度 fix(マウスオーバーで詳細)",
"Firstpass width": "Firstpass width",
"Firstpass height": "Firstpass height",
"Denoising strength": "ノイズ除去 強度",
"Batch count": "バッチ生成回数",
"Batch size": "バッチあたり生成枚数",
"CFG Scale": "CFG Scale",
"Seed": "シード値",
"Extra": "その他",
"Variation seed": "Variation シード値",
"Variation strength": "Variation 強度",
"Resize seed from width": "Resize seed from width",
"Resize seed from height": "Resize seed from height",
"Script": "スクリプト",
"None": "なし",
"Prompt matrix": "Prompt matrix",
"Prompts from file or textbox": "Prompts from file or textbox",
"X/Y plot": "X/Y plot",
"Put variable parts at start of prompt": "Put variable parts at start of prompt",
"Show Textbox": "Show Textbox",
"File with inputs": "File with inputs",
"Prompts": "プロンプト",
"X type": "X軸の種類",
"Nothing": "なし",
"Var. seed": "Var. seed",
"Var. strength": "Var. 強度",
"Steps": "ステップ数",
"Prompt S/R": "Prompt S/R",
"Prompt order": "Prompt order",
"Sampler": "サンプラー",
"Checkpoint name": "Checkpoint名",
"Hypernetwork": "Hypernetwork",
"Hypernet str.": "Hypernet強度",
"Sigma Churn": "Sigma Churn",
"Sigma min": "Sigma min",
"Sigma max": "Sigma max",
"Sigma noise": "Sigma noise",
"Eta": "Eta",
"Clip skip": "Clip skip",
"Denoising": "Denoising",
"X values": "Xの値",
"Y type": "Y軸の種類",
"Y values": "Yの値",
"Draw legend": "凡例を描画",
"Include Separate Images": "Include Separate Images",
"Keep -1 for seeds": "シード値を-1で固定",
"ここに画像をドロップ": "ここに画像をドロップ",
"Save": "保存",
"Send to img2img": "img2imgに送る",
"Send to inpaint": "描き直しに送る",
"Send to extras": "その他タブに送る",
"Make Zip when Save?": "保存するときZipも同時に作る",
"Textbox": "Textbox",
"Interrogate\nCLIP": "Interrogate\nCLIP",
"Interrogate\nDeepBooru": "Interrogate\nDeepBooru",
"Inpaint": "描き直し(Inpaint)",
"Batch img2img": "Batch img2img",
"Image for img2img": "Image for img2img",
"Image for inpainting with mask": "Image for inpainting with mask",
"Mask": "Mask",
"Mask blur": "Mask blur",
"Mask mode": "Mask mode",
"Draw mask": "Draw mask",
"Upload mask": "Upload mask",
"Masking mode": "Masking mode",
"Inpaint masked": "Inpaint masked",
"Inpaint not masked": "Inpaint not masked",
"Masked content": "Masked content",
"fill": "fill",
"original": "オリジナル",
"latent noise": "latent noise",
"latent nothing": "latent nothing",
"Inpaint at full resolution": "Inpaint at full resolution",
"Inpaint at full resolution padding, pixels": "Inpaint at full resolution padding, pixels",
"Process images in a directory on the same machine where the server is running.": "Process images in a directory on the same machine where the server is running.",
"Use an empty output directory to save pictures normally instead of writing to the output directory.": "Use an empty output directory to save pictures normally instead of writing to the output directory.",
"Input directory": "入力フォルダ",
"Output directory": "出力フォルダ",
"Resize mode": "リサイズモード",
"Just resize": "リサイズのみ",
"Crop and resize": "切り取ってからリサイズ",
"Resize and fill": "リサイズして埋める",
"img2img alternative test": "img2img alternative test",
"Loopback": "ループバック",
"Outpainting mk2": "Outpainting mk2",
"Poor man's outpainting": "Poor man's outpainting",
"SD upscale": "SD アップスケール",
"should be 2 or lower.": "2以下にすること",
"Override `Sampling method` to Euler?(this method is built for it)": "サンプリングアルゴリズムをEulerに上書きする(そうすることを前提に設計されています)",
"Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)",
"Original prompt": "Original prompt",
"Original negative prompt": "Original negative prompt",
"Override `Sampling Steps` to the same value as `Decode steps`?": "Override `Sampling Steps` to the same value as `Decode steps`?",
"Decode steps": "Decode steps",
"Override `Denoising strength` to 1?": "Override `Denoising strength` to 1?",
"Decode CFG scale": "Decode CFG scale",
"Randomness": "Randomness",
"Sigma adjustment for finding noise for image": "Sigma adjustment for finding noise for image",
"Loops": "Loops",
"Denoising strength change factor": "Denoising strength change factor",
"Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8",
"Pixels to expand": "Pixels to expand",
"Outpainting direction": "Outpainting direction",
"left": "左",
"right": "右",
"up": "上",
"down": "下",
"Fall-off exponent (lower=higher detail)": "Fall-off exponent (lower=higher detail)",
"Color variation": "Color variation",
"Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "画像を2倍の大きさにアップスケールします。幅と高さのスライダーでタイルの大きさを設定します。",
"Tile overlap": "Tile overlap",
"Upscaler": "アップスケーラー",
"Lanczos": "Lanczos",
"LDSR": "LDSR",
"BSRGAN 4x": "BSRGAN 4x",
"ESRGAN_4x": "ESRGAN_4x",
"ScuNET GAN": "ScuNET GAN",
"ScuNET PSNR": "ScuNET PSNR",
"SwinIR 4x": "SwinIR 4x",
"Single Image": "単一画像",
"Batch Process": "バッチ処理",
"Batch from Directory": "フォルダからバッチ処理",
"Source": "入力",
"Show result images": "出力画像を表示",
"Scale by": "倍率指定",
"Scale to": "解像度指定",
"Resize": "倍率",
"Crop to fit": "合うように切り抜き",
"Upscaler 2": "アップスケーラー 2",
"Upscaler 2 visibility": "Upscaler 2 visibility",
"GFPGAN visibility": "GFPGAN visibility",
"CodeFormer visibility": "CodeFormer visibility",
"CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer weight (0 = maximum effect, 1 = minimum effect)",
"Open output directory": "出力フォルダを開く",
"Send to txt2img": "txt2imgに送る",
"txt2img history": "txt2imgの履歴",
"img2img history": "img2imgの履歴",
"extras history": "その他タブの履歴",
"Renew Page": "更新",
"First Page": "最初のぺージへ",
"Prev Page": "前ページへ",
"Page Index": "ページ番号",
"Next Page": "次ページへ",
"End Page": "最後のページへ",
"number of images to delete consecutively next": "number of images to delete consecutively next",
"Delete": "削除",
"Generate Info": "生成情報",
"File Name": "ファイル名",
"set_index": "set_index",
"A merger of the two checkpoints will be generated in your": "統合されたチェックポイントはあなたの",
"checkpoint": "checkpoint",
"directory.": "フォルダに保存されます.",
"Primary model (A)": "1つめのmodel (A)",
"Secondary model (B)": "2つめのmodel (B)",
"Tertiary model (C)": "3つめのmodel (C)",
"Custom Name (Optional)": "Custom Name (任意)",
"Multiplier (M) - set to 0 to get model A": "Multiplier (M) 0にすると完全にmodel Aとなります (ツールチップ参照)",
"Interpolation Method": "混合(Interpolation)方式",
"Weighted sum": "加重平均",
"Add difference": "差を加える",
"Save as float16": "float16で保存",
"See": "詳細な説明については",
"wiki": "wiki",
"for detailed explanation.": "を見てください。",
"Create embedding": "Embeddingを作る",
"Create hypernetwork": "Hypernetworkを作る",
"Preprocess images": "画像の前処理",
"Name": "ファイル名",
"Initialization text": "Initialization text",
"Number of vectors per token": "Number of vectors per token",
"Modules": "Modules",
"Source directory": "入力フォルダ",
"Destination directory": "出力フォルダ",
"Create flipped copies": "反転画像を生成する",
"Split oversized images into two": "大きすぎる画像を2分割する",
"Use BLIP for caption": "BLIPで説明をつける",
"Use deepbooru for caption": "deepbooruで説明をつける",
"Preprocess": "前処理開始",
"Train an embedding; must specify a directory with a set of 1:1 ratio images": "embeddingの学習をします;データセット内の画像は正方形でなければなりません。",
"Embedding": "Embedding",
"Learning rate": "学習率",
"Dataset directory": "データセットフォルダ",
"Log directory": "ログフォルダ",
"Prompt template file": "Prompt template file",
"Max steps": "最大ステップ数",
"Save an image to log directory every N steps, 0 to disable": "指定したステップ数ごとに画像を生成し、ログに保存する。0で無効化。",
"Save a copy of embedding to log directory every N steps, 0 to disable": "指定したステップ数ごとにEmbeddingのコピーをログに保存する。0で無効化。",
"Save images with embedding in PNG chunks": "保存する画像にembeddingを埋め込む",
"Read parameters (prompt, etc...) from txt2img tab when making previews": "Read parameters (prompt, etc...) from txt2img tab when making previews",
"Train Hypernetwork": "Hypernetworkの学習を開始",
"Train Embedding": "Embeddingの学習を開始",
"Apply settings": "Apply settings",
"Saving images/grids": "画像/グリッドの保存",
"Always save all generated images": "生成された画像をすべて保存する",
"File format for images": "画像ファイルの保存形式",
"Images filename pattern": "ファイル名のパターン",
"Always save all generated image grids": "グリッド画像を常に保存する",
"File format for grids": "グリッド画像の保存形式",
"Add extended info (seed, prompt) to filename when saving grid": "保存するグリッド画像のファイル名に追加情報(シード値、プロンプト)を加える",
"Do not save grids consisting of one picture": "1画像からなるグリッド画像は保存しない",
"Prevent empty spots in grid (when set to autodetect)": "(自動設定のとき)グリッドに空隙が生じるのを防ぐ",
"Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "グリッドの列数; -1で自動設定、0でバッチ生成回数と同じにする",
"Save text information about generation parameters as chunks to png files": "生成に関するパラメーターをpng画像に含める",
"Create a text file next to every image with generation parameters.": "保存する画像とともに生成パラメータをテキストファイルで保存する",
"Save a copy of image before doing face restoration.": "顔修復を行う前にコピーを保存しておく。",
"Quality for saved jpeg images": "JPG保存時の画質",
"If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "PNG画像が4MBを超えるか、どちらか1辺の長さが4000を超えたなら、ダウンスケールしてコピーを別にJPGで保存する",
"Use original name for output filename during batch process in extras tab": "Use original name for output filename during batch process in extras tab",
"When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image",
"Do not add watermark to images": "電子透かしを画像に追加しない",
"Paths for saving": "Paths for saving",
"Output directory for images; if empty, defaults to three directories below": "画像の保存先フォルダ(下項目のデフォルト値になります)",
"Output directory for txt2img images": "txt2imgで作った画像の保存先フォルダ",
"Output directory for img2img images": "img2imgで作った画像の保存先フォルダ",
"Output directory for images from extras tab": "その他タブで作った画像の保存先フォルダ",
"Output directory for grids; if empty, defaults to two directories below": "画像の保存先フォルダ(下項目のデフォルト値になります)",
"Output directory for txt2img grids": "txt2imgで作ったグリッドの保存先フォルダ",
"Output directory for img2img grids": "img2imgで作ったグリッドの保存先フォルダ",
"Directory for saving images using the Save button": "保存ボタンを押したときの画像の保存先フォルダ",
"Saving to a directory": "フォルダについて",
"Save images to a subdirectory": "画像をサブフォルダに保存する",
"Save grids to a subdirectory": "グリッドをサブフォルダに保存する",
"When using \"Save\" button, save images to a subdirectory": "保存ボタンを押した時、画像をサブフォルダに保存する",
"Directory name pattern": "フォルダ名のパターン",
"Max prompt words for [prompt_words] pattern": "Max prompt words for [prompt_words] pattern",
"Upscaling": "アップスケール",
"Tile size for ESRGAN upscalers. 0 = no tiling.": "ESRGANのタイルサイズ。0とするとタイルしない。",
"Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "ESRGANのタイルの重複部分のピクセル数。少なくするとつなぎ目が見えやすくなる。",
"Tile size for all SwinIR.": "SwinIRのタイルサイズ",
"Tile overlap, in pixels for SwinIR. Low values = visible seam.": "SwinIRのタイルの重複部分のピクセル数。少なくするとつなぎ目が見えやすくなる。",
"LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster",
"Upscaler for img2img": "img2imgで使うアップスケーラー",
"Upscale latent space image when doing hires. fix": "高解像度 fix時に潜在空間(latent space)の画像をアップスケールする",
"Face restoration": "顔修復",
"CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormerの重みパラメーター;0が最大で1が最小",
"Move face restoration model from VRAM into RAM after processing": "処理終了後、顔修復モデルをVRAMからRAMへと移動する",
"System": "システム設定",
"VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.",
"Always print all generation info to standard output": "常にすべての生成に関する情報を標準出力(stdout)に出力する",
"Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.",
"Training": "学習",
"Unload VAE and CLIP from VRAM when training": "学習を行う際、VAEとCLIPをVRAMから削除する",
"Filename word regex": "Filename word regex",
"Filename join string": "Filename join string",
"Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number",
"Save an csv containing the loss to log directory every N steps, 0 to disable": "Save an csv containing the loss to log directory every N steps, 0 to disable",
"Stable Diffusion": "Stable Diffusion",
"Checkpoints to cache in RAM": "RAMにキャッシュするCheckpoint数",
"Hypernetwork strength": "Hypernetwork strength",
"Apply color correction to img2img results to match original colors.": "元画像に合わせてimg2imgの結果を色補正する",
"Save a copy of image before applying color correction to img2img results": "色補正をする前の画像も保存する",
"With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "img2imgでスライダーで指定されたステップ数を正確に実行する通常は、イズ除去を少なくするためにより少ないステップ数で実行します。",
"Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.",
"Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "強調: (text)とするとモデルはtextをより強く扱い、[text]とするとモデルはtextをより弱く扱います。",
"Use old emphasis implementation. Can be useful to reproduce old seeds.": "古い強調の実装を使う。古い生成物を再現するのに使えます。",
"Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image",
"Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens",
"Filter NSFW content": "NSFW(≒R-18)なコンテンツを検閲する",
"Stop At last layers of CLIP model": "最後から何層目でCLIPを止めるか(stop…layers of CLIP model)",
"Interrogate Options": "Interrogate 設定",
"Interrogate: keep models in VRAM": "Interrogate: モデルをVRAMに保持する",
"Interrogate: use artists from artists.csv": "Interrogate: artists.csvにある芸術家などの名称を利用する",
"Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).",
"Interrogate: num_beams for BLIP": "Interrogate: num_beams for BLIP",
"Interrogate: minimum description length (excluding artists, etc..)": "Interrogate: minimum description length (excluding artists, etc..)",
"Interrogate: maximum description length": "Interrogate: maximum description length",
"CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)",
"Interrogate: deepbooru score threshold": "Interrogate: deepbooruで拾う単語のスコア閾値",
"Interrogate: deepbooru sort alphabetically": "Interrogate: deepbooruで単語をアルファベット順に並べる",
"use spaces for tags in deepbooru": "deepbooruのタグでスペースを使う",
"escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "deepbooruで括弧をエスケープする(\\) (強調を示す()ではなく、文字通りの()であることをモデルに示すため)",
"User interface": "UI設定",
"Show progressbar": "プログレスバーを表示",
"Show image creation progress every N sampling steps. Set 0 to disable.": "指定したステップ数ごとに画像の生成過程を表示する。0で無効化。",
"Show grid in results for web": "WebUI上でグリッド表示",
"Do not show any images in results for web": "WebUI上で一切画像を表示しない",
"Add model hash to generation information": "モデルのハッシュ値を生成情報に追加",
"Add model name to generation information": "モデルの名称を生成情報に追加",
"Font for image grids that have text": "画像グリッド内のテキストフォント",
"Enable full page image viewer": "フルページの画像ビューワーを有効化",
"Show images zoomed in by default in full page image viewer": "フルページ画像ビューアでデフォルトで画像を拡大して表示する",
"Show generation progress in window title.": "ウィンドウのタイトルで生成の進捗を表示",
"Quicksettings list": "Quicksettings list",
"Localization (requires restart)": "言語 (プログラムの再起動が必要)",
"ja_JP": "ja_JP",
"Sampler parameters": "サンプラー parameters",
"Hide samplers in user interface (requires restart)": "使わないサンプリングアルゴリズムを隠す (再起動が必要)",
"eta (noise multiplier) for DDIM": "DDIMで用いるeta (noise multiplier)",
"eta (noise multiplier) for ancestral samplers": "ancestral サンプラーで用いるeta (noise multiplier)",
"img2img DDIM discretize": "img2img DDIM discretize",
"uniform": "uniform",
"quad": "quad",
"sigma churn": "sigma churn",
"sigma tmin": "sigma tmin",
"sigma noise": "sigma noise",
"Eta noise seed delta": "Eta noise seed delta",
"Request browser notifications": "ブラウザ通知の許可を要求する",
"Download localization template": "ローカライゼーション用のテンプレートをダウンロードする",
"Reload custom script bodies (No ui updates, No restart)": "カスタムスクリプトを再読み込み (UIは変更されず、再起動もしません。)",
"Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Gradioを再起動してコンポーネントをリフレッシュする (Custom Scripts, ui.py, js, cssのみ影響を受ける)",
"Prompt (press Ctrl+Enter or Alt+Enter to generate)": "プロンプト (Ctrl+Enter か Alt+Enter を押して生成)",
"Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "ネガティブ プロンプト (Ctrl+Enter か Alt+Enter を押して生成)",
"Add a random artist to the prompt.": "芸術家などの名称をプロンプトに追加",
"Read generation parameters from prompt or last generation if prompt is empty into user interface.": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
"Save style": "スタイルを保存する",
"Apply selected styles to current prompt": "現在のプロンプトに選択したスタイルを適用する",
"Stop processing current image and continue processing.": "現在の処理を中断し、その後の処理は続ける",
"Stop processing images and return any results accumulated so far.": "処理を中断し、それまでに出来た結果を表示する",
"Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both",
"Do not do anything special": "特別なことをなにもしない",
"Which algorithm to use to produce the image": "どのアルゴリズムを使って生成するか",
"Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 非常に独創的で、ステップ数によって全く異なる画像が得られる、ステップ数を3040より高く設定しても効果がない。",
"Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 描き直しには最適",
"Produce an image that can be tiled.": "Produce an image that can be tiled.",
"Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "2ステップで、まず部分的に小さい解像度で画像を作成し、その後アップスケールすることで、構図を変えずにディテールが改善されます。",
"Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.",
"How many batches of images to create": "バッチ処理を何回行うか",
"How many image to create in a single batch": "1回のバッチ処理で何枚の画像を生成するか",
"Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results",
"A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result",
"Set seed to -1, which will cause a new random number to be used every time": "シード値を -1 に設定するとランダムに生成します。",
"Reuse seed from last generation, mostly useful if it was randomed": "前回生成時のシード値を読み出す。(ランダム生成時に便利)",
"Seed of a different picture to be mixed into the generation.": "Seed of a different picture to be mixed into the generation.",
"How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).",
"Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution",
"Separate values for X axis using commas.": "X軸に用いる値をカンマ(,)で区切って入力してください。",
"Separate values for Y axis using commas.": "Y軸に用いる値をカンマ(,)で区切って入力してください。",
"Write image to a directory (default - log/images) and generation parameters into csv file.": "Write image to a directory (default - log/images) and generation parameters into csv file.",
"Open images output directory": "画像の出力フォルダを開く",
"How much to blur the mask before processing, in pixels.": "How much to blur the mask before processing, in pixels.",
"What to put inside the masked area before processing it with Stable Diffusion.": "What to put inside the masked area before processing it with Stable Diffusion.",
"fill it with colors of the image": "fill it with colors of the image",
"keep whatever was there originally": "keep whatever was there originally",
"fill it with latent space noise": "fill it with latent space noise",
"fill it with latent space zeroes": "fill it with latent space zeroes",
"Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image",
"Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.",
"Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.",
"Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.",
"How many times to repeat processing an image and using it as input for the next iteration": "How many times to repeat processing an image and using it as input for the next iteration",
"In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.",
"For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.",
"A directory on the same machine where the server is running.": "A directory on the same machine where the server is running.",
"Leave blank to save images to the default path.": "空欄でデフォルトの場所へ画像を保存",
"Result = A * (1 - M) + B * M": "結果モデル = A * (1 - M) + B * M",
"Result = A + (B - C) * M": "結果モデル = A + (B - C) * M",
"Path to directory with input images": "Path to directory with input images",
"Path to directory where to write outputs": "Path to directory where to write outputs",
"Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.",
"If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "このオプションを有効にすると、作成された画像にウォーターマークが追加されなくなります。警告:ウォーターマークを追加しない場合、非倫理的な行動とみなされる場合があります。",
"Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.",
"Restore low quality faces using GFPGAN neural network": "GFPGANを用いて低クオリティーの画像を修復",
"This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.",
"This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.",
"List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.",
"If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing."
}

475
localizations/ru_RU.json Normal file
View file

@ -0,0 +1,475 @@
{
"⤡": "⤡",
"⊞": "⊞",
"×": "×",
"": "",
"": "",
"Loading...": "Загрузка...",
"view": "просмотр",
"api": "api",
"•": "•",
"built with gradio": "На основе Gradio",
"Stable Diffusion checkpoint": "Веса Stable Diffusion",
"txt2img": "текст-в-рисунок",
"img2img": "рисунок-в-рисунок",
"Extras": "Дополнения",
"PNG Info": "Информация о PNG",
"Image Browser": "Просмотр изображений",
"History": "Журнал",
"Checkpoint Merger": "Слияние весов",
"Train": "Обучение",
"Create aesthetic embedding": "Создать эмбеддинг эстетики",
"Settings": "Настройки",
"Prompt": "Запрос",
"Negative prompt": "Исключающий запрос",
"Run": "Запустить",
"Skip": "Пропустить",
"Interrupt": "Прервать",
"Generate": "Создать",
"Style 1": "Стиль 1",
"Style 2": "Стиль 2",
"Label": "Метка",
"File": "Файл",
"Drop File Here": "Перетащите файл сюда",
"-": "-",
"or": "или",
"Click to Upload": "Нажмите, чтобы загрузить",
"Image": "Рисунок",
"Check progress": "Узнать состояние",
"Check progress (first)": "Узнать состояние первого",
"Sampling Steps": "Шагов семплера",
"Sampling method": "Метод семплирования",
"Euler a": "Euler a",
"Euler": "Euler",
"LMS": "LMS",
"Heun": "Heun",
"DPM2": "DPM2",
"DPM2 a": "DPM2 a",
"DPM fast": "DPM fast",
"DPM adaptive": "DPM adaptive",
"LMS Karras": "LMS Karras",
"DPM2 Karras": "DPM2 Karras",
"DPM2 a Karras": "DPM2 a Karras",
"DDIM": "DDIM",
"PLMS": "PLMS",
"Width": "Ширина",
"Height": "Высота",
"Restore faces": "Восстановить лица",
"Tiling": "Замощение",
"Highres. fix": "HD-режим",
"Firstpass width": "Ширина первого прохода",
"Firstpass height": "Высота первого прохода",
"Denoising strength": "Сила шумоподавления",
"Batch count": "Рисунков подряд",
"Batch size": "Рисунков параллельно",
"CFG Scale": "Близость к запросу",
"Seed": "Семя",
"Extra": "Дополнения",
"Variation seed": "Вариация семени",
"Variation strength": "Вариация шумоподавления",
"Resize seed from width": "Поправка в семя от ширины",
"Resize seed from height": "Поправка в семя от высоты",
"Open for Clip Aesthetic!": "Clip-эстетика!",
"▼": "▼",
"Aesthetic weight": "Вес эстетики",
"Aesthetic steps": "Шагов эстетики",
"Aesthetic learning rate": "Скорость обучения эстетики",
"Slerp interpolation": "Slerp-интерполяция",
"Aesthetic imgs embedding": "Рисунки - эмбеддинги эстетики",
"None": "Ничего",
"Aesthetic text for imgs": "Имя эстетики рисунков",
"Slerp angle": "Угол slerp",
"Is negative text": "Это текст для исключения",
"Script": "Скрипт",
"Prompt matrix": "Матрица запросов",
"Prompts from file or textbox": "Запросы из файла или текста",
"X/Y plot": "X/Y-график",
"Put variable parts at start of prompt": "Переменное начало запроса",
"Show Textbox": "Показать текстовый ввод",
"File with inputs": "Файл входа",
"Prompts": "Запросы",
"X type": "Ось X",
"Nothing": "Ничего",
"Var. seed": "Вариация семени",
"Var. strength": "Вариация силы",
"Steps": "Число шагов",
"Prompt S/R": "Вариация запроса",
"Prompt order": "Порядок запросов",
"Sampler": "Семплер",
"Checkpoint name": "Имя файла весов",
"Hypernetwork": "Гиперсеть",
"Hypernet str.": "Строка гиперсети",
"Sigma Churn": "Возмущение сигмы",
"Sigma min": "Мин. сигма",
"Sigma max": "Макс. сигма",
"Sigma noise": "Сигма-шум",
"Eta": "Расчётное время",
"Clip skip": "Пропустить Clip",
"Denoising": "Шумоподавление",
"X values": "Значения X",
"Y type": "Тип Y",
"Y values": "Значения Y",
"Draw legend": "Легенда графика",
"Include Separate Images": "Включить отдельные рисунки",
"Keep -1 for seeds": "-1 для семени",
"Drop Image Here": "Перетащите рисунок сюда",
"Save": "Сохранить",
"Send to img2img": "В рисунок-в-рисунок",
"Send to inpaint": "В режим врисовывания",
"Send to extras": "В дополнения",
"Make Zip when Save?": "Создать zip при сохранении?",
"Textbox": "Текст",
"Interrogate\nCLIP": "Распознавание\nCLIP",
"Interrogate\nDeepBooru": "Распознавание\nDeepBooru",
"Inpaint": "врисовать",
"Batch img2img": "рисунок-в-рисунок (набор)",
"Image for img2img": "рисунок-в-рисунок (вход)",
"Image for inpainting with mask": "врисовать (вход с трафаретом)",
"Mask": "Трафарет",
"Mask blur": "Размытие трафарета",
"Mask mode": "Режим трафарета",
"Draw mask": "Нарисовать трафарет",
"Upload mask": "Загрузить трафарет",
"Masking mode": "Режим трафарета",
"Inpaint masked": "Внутри трафарета",
"Inpaint not masked": "Вне трафарета",
"Masked content": "Под трафаретом",
"fill": "залить",
"original": "сохранить",
"latent noise": "латентный шум",
"latent nothing": "латентная пустота",
"Inpaint at full resolution": "Врисовать при полном разрешении",
"Inpaint at full resolution padding, pixels": "Врисовать с достройкой до полного разрешения, в пикселях",
"Process images in a directory on the same machine where the server is running.": "Обрабатывать рисунки на том же компьютере, где сервер",
"Use an empty output directory to save pictures normally instead of writing to the output directory.": "Использовать пустую папку вместо того, чтобы выводить в output",
"Disabled when launched with --hide-ui-dir-config.": "Выключено при запуске с --hide-ui-dir-config",
"Input directory": "Папка входа",
"Output directory": "Папка выхода",
"Resize mode": "Масштабирование",
"Just resize": "Только сжать",
"Crop and resize": "Сжать и обрезать",
"Resize and fill": "Сжать и залить",
"img2img alternative test": "рисунок-в-рисунок (альтернатива)",
"Loopback": "Прокручивание",
"Outpainting mk2": "Обрисовыватель mk2",
"Poor man's outpainting": "Хоть какой-то обрисовыватель",
"SD upscale": "SD-апскейл",
"should be 2 or lower.": "должно быть меньше равно 2",
"Override `Sampling method` to Euler?(this method is built for it)": "Сменить метод семплирования на метод Эйлера?(скрипт строился с его учётом)",
"Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "Сменить `запрос` на `изначальный запрос`?(и `запрос-исключение`)",
"Original prompt": "Изначальный запрос",
"Original negative prompt": "Изначальный запрос-исключение",
"Override `Sampling Steps` to the same value as `Decode steps`?": "Сменить число шагов на число шагов декодирования?",
"Decode steps": "Шагов декодирования",
"Override `Denoising strength` to 1?": "Сменить силу шумоподавления на 1?",
"Decode CFG scale": "Близость к запросу декодирования",
"Randomness": "Случайность",
"Sigma adjustment for finding noise for image": "Поправка к сигме подбора шума для рисунка",
"Loops": "Циклов",
"Denoising strength change factor": "Множитель силы шумоподавления",
"Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "Рекоммендуемые настройки: Число шагов80-100МетодEuler aШумоподавление0.8",
"Pixels to expand": "Пикселов расширить",
"Outpainting direction": "Направление обрисовывания",
"left": "влево",
"right": "вправо",
"up": "вверх",
"down": "вниз",
"Fall-off exponent (lower=higher detail)": "Степень затухания (меньше=больше деталей)",
"Color variation": "Вариация цвета",
"Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "Расширит рисунок дважды; ползунки ширины и высоты устанавливают размеры плиток",
"Tile overlap": "Перекрытие плиток",
"Upscaler": "Апскейлер",
"Lanczos": "Lanczos",
"LDSR": "LDSR",
"BSRGAN 4x": "BSRGAN 4x",
"ESRGAN_4x": "ESRGAN_4x",
"R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B",
"ScuNET GAN": "ScuNET GAN",
"ScuNET PSNR": "ScuNET PSNR",
"SwinIR_4x": "SwinIR 4x",
"Single Image": "Один рисунок",
"Batch Process": "Набор рисунков",
"Batch from Directory": "Рисунки из папки",
"Source": "Вход",
"Show result images": "Показать результаты",
"Scale by": "Увеличить в",
"Scale to": "Увеличить до",
"Resize": "Масштабировать",
"Crop to fit": "Обрезать до рамки",
"Upscaler 2": "Апскейлер 2",
"Upscaler 2 visibility": "Видимость Апскейлера 2",
"GFPGAN visibility": "Видимость GFPGAN",
"CodeFormer visibility": "Видимость CodeFormer",
"CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "Вес CodeFormer (0 = максимальное действие, 1 = минимальное)",
"Open output directory": "Открыть папку выхода",
"Send to txt2img": "В текст-в-рисунок",
"txt2img history": "журнал текста-в-рисунок",
"img2img history": "журнал рисунка-в-рисунок",
"extras history": "журнал дополнений",
"Renew Page": "Обновить страницу",
"extras": "дополнения",
"favorites": "избранное",
"Load": "Загрузить",
"Images directory": "Папка с рисунками",
"Prev batch": "Пред. набор",
"Next batch": "След. набор",
"First Page": "Первая страница",
"Prev Page": "Пред. страница",
"Page Index": "Список страниц",
"Next Page": "След. страница",
"End Page": "Конец страницы",
"number of images to delete consecutively next": "сколько рисунков удалить подряд",
"Delete": "Удалить",
"Generate Info": "Сведения о генерации",
"File Name": "Имя файла",
"Collect": "Накопить",
"Refresh page": "Обновить страницу",
"Date to": "Дата",
"Number": "Число",
"set_index": "индекс",
"Checkbox": "Галочка",
"A merger of the two checkpoints will be generated in your": "Слияние весов будет создано, где хранятся",
"checkpoint": "ckpt",
"directory.": "веса",
"Primary model (A)": "Первичная модель (A)",
"Secondary model (B)": "Вторичная модель (B)",
"Tertiary model (C)": "Третичная модель (C)",
"Custom Name (Optional)": "Произвольное имя (необязательно)",
"Multiplier (M) - set to 0 to get model A": "Множитель (M) - 0 даст модель A",
"Interpolation Method": "Метод интерполяции",
"Weighted sum": "Взвешенная сумма",
"Add difference": "Сумма разностей",
"Save as float16": "Сохранить как float16",
"See": "См.",
"wiki": "вики",
"for detailed explanation.": "для подробных объяснений.",
"Create embedding": "Создать эмбеддинг",
"Create aesthetic images embedding": "Создать эмбеддинг эстетики по рисункам",
"Create hypernetwork": "Создать гиперсеть",
"Preprocess images": "Предобработать рисунки",
"Name": "Имя",
"Initialization text": "Соответствующий текст",
"Number of vectors per token": "Векторов на токен",
"Overwrite Old Embedding": "Перезаписать эмбеддинг",
"Source directory": "Исходная папка",
"Modules": "Модули",
"Enter hypernetwork layer structure": "Структура слоёв гиперсети",
"Add layer normalization": "Добавить нормализацию слоёв",
"Overwrite Old Hypernetwork": "Перезаписать гиперсеть",
"Select activation function of hypernetwork": "Функция активации гиперсети",
"linear": "линейная",
"relu": "relu",
"leakyrelu": "leakyrelu",
"Destination directory": "Папка назначения",
"Existing Caption txt Action": "Что делать с предыдущим текстом",
"ignore": "игнорировать",
"copy": "копировать",
"prepend": "в начало",
"append": "в конец",
"Create flipped copies": "Создать отражённые копии",
"Split oversized images into two": "Поделить слишком большие рисунки пополам",
"Split oversized images": "Поделить слишком большие рисунки",
"Use BLIP for caption": "Использовать BLIP для названий",
"Use deepbooru for caption": "Использовать deepbooru для тегов",
"Split image threshold": "Порог разделения рисунков",
"Split image overlap ratio": "Пропорции разделения рисунков",
"Preprocess": "Предобработка",
"Train an embedding; must specify a directory with a set of 1:1 ratio images": "Обучить эмбеддинг; укажите папку рисунков с пропорциями 1:1",
"Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images": "Обучить эмбеддинг или гиперсеть; укажите папку рисунков с пропорциями 1:1",
"[wiki]": "[вики]",
"Embedding": "Эмбеддинг",
"Embedding Learning rate": "Скорость обучения эмбеддинга",
"Hypernetwork Learning rate": "Скорость обучения гиперсети",
"Learning rate": "Скорость обучения",
"Dataset directory": "Папка датасета",
"Log directory": "Папка журнала",
"Prompt template file": "Файл шаблона запроса",
"Max steps": "Макс. шагов",
"Save an image to log directory every N steps, 0 to disable": "Сохранять рисунок каждые N шагов, 0 чтобы отключить",
"Save a copy of embedding to log directory every N steps, 0 to disable": "Сохранять эмбеддинг каждые N шагов, 0 чтобы отключить",
"Save images with embedding in PNG chunks": "Сохранить рисунок с эмбеддингом в виде PNG-фрагментов",
"Read parameters (prompt, etc...) from txt2img tab when making previews": "Считать параметры (запрос и т.д.) из вкладки текст-в-рисунок для предпросмотра",
"Train Hypernetwork": "Обучить гиперсеть",
"Train Embedding": "Обучить эмбеддинг",
"Create an aesthetic embedding out of any number of images": "Создать эмбеддинг эстетики по любому числу рисунков",
"Create images embedding": "Создать эмбеддинг рисунков",
"Apply settings": "Применить настройки",
"Saving images/grids": "Сохранение рисунков/таблиц",
"Always save all generated images": "Всегда сохранять созданные рисунки",
"File format for images": "Формат файла рисунков",
"Images filename pattern": "Формат имени файлов рисунков",
"Always save all generated image grids": "Всегда сохранять созданные таблицы",
"File format for grids": "Формат файла таблиц",
"Add extended info (seed, prompt) to filename when saving grid": "Вставлять доп. сведения (семя, запрос) в имя файла таблиц",
"Do not save grids consisting of one picture": "Не сохранять таблицы из одного рисунка",
"Prevent empty spots in grid (when set to autodetect)": "Не допускать пустоты в таблицах (автообнаружение)",
"Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "Число строк таблицы; -1, чтобы автоматически, 0 — размер набора",
"Save text information about generation parameters as chunks to png files": "Встроить сведения о генерации в файлы png",
"Create a text file next to every image with generation parameters.": "Создать текстовый файл для каждого рисунка с параметрами генерации",
"Save a copy of image before doing face restoration.": "Сохранить копию перед восстановлением лиц",
"Quality for saved jpeg images": "Качество jpeg-рисунков",
"If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "Если размер PNG больше 4МБ или рисунок шире 4000 пикселей, пересжать в JPEG",
"Use original name for output filename during batch process in extras tab": "Использовать исходное имя выходного файла для обработки набора во вкладке дополнений",
"When using 'Save' button, only save a single selected image": "Сохранять только один рисунок при нажатии кнопки Сохранить",
"Do not add watermark to images": "Не добавлять водяной знак",
"Paths for saving": "Папки сохранений",
"Output directory for images; if empty, defaults to three directories below": "Папка выхода рисунков; если пусто, использует те, что ниже",
"Output directory for txt2img images": "Папка выхода текста-в-рисунок",
"Output directory for img2img images": "Папка выхода рисунка-в-рисунок",
"Output directory for images from extras tab": "Папка выхода для дополнений",
"Output directory for grids; if empty, defaults to two directories below": "Папка выхода таблиц; если пусто, использует папки выше",
"Output directory for txt2img grids": "Папка выхода текста-в-рисунок",
"Output directory for img2img grids": "Папка выхода рисунка-в-рисунок",
"Directory for saving images using the Save button": "Папка выхода для кнопки Сохранить",
"Saving to a directory": "Сохранить в папку",
"Save images to a subdirectory": "Сохранить рисунки в подпапку",
"Save grids to a subdirectory": "Сохранить таблицы в подпапку",
"When using \"Save\" button, save images to a subdirectory": "При нажатии кнопки Сохранить, сложить рисунки в подпапку",
"Directory name pattern": "Шаблон имени папки",
"Max prompt words for [prompt_words] pattern": "Макс. число слов для шаблона [prompt_words]",
"Upscaling": "Апскейл",
"Tile size for ESRGAN upscalers. 0 = no tiling.": "Размер плитки для ESRGAN. 0 = нет замощения",
"Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "Наложение плиток ESRGAN, в пикселях. Меньше = выделеннее шов",
"Tile size for all SwinIR.": "Размер плиток SwinIR",
"Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Наложение плиток SwinIR, в пикселях. Меньше = выделеннее шов",
"LDSR processing steps. Lower = faster": "Число шагов LDSR. Меньше = быстрее",
"Upscaler for img2img": "Апскейлер рисунка-в-рисунок",
"Upscale latent space image when doing hires. fix": "Апскейлить образ латентного пространства для HD-режима",
"Face restoration": "Восстановление лиц",
"CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "Вес CodeFormer 0 = максимальное действие; 1 = минимальное",
"Move face restoration model from VRAM into RAM after processing": "Переместить модель восстановления лиц из ВОЗУ в ОЗУ после обработки",
"System": "Система",
"VRAM usage polls per second during generation. Set to 0 to disable.": "Сколько раз в секунду следить за потреблением ВОЗУ. 0, чтобы отключить",
"Always print all generation info to standard output": "Выводить все сведения о генерации в стандартный вывод",
"Add a second progress bar to the console that shows progress for an entire job.": "Вторая шкала прогресса для всей задачи",
"Training": "Обучение",
"Unload VAE and CLIP from VRAM when training": "Убрать VAE и CLIP из ВОЗУ на время обучения",
"Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "Переместить VAE и CLIP в ОЗУ на время обучения гиперсети. Сохраняет ВОЗУ",
"Filename word regex": "Regex имени файла",
"Filename join string": "Дополнить к имени файла",
"Number of repeats for a single input image per epoch; used only for displaying epoch number": "Число повторов для каждого рисунка за эпоху; используется только, чтобы отобразить число эпохи",
"Save an csv containing the loss to log directory every N steps, 0 to disable": "Сохранять csv с параметром loss в папку журнала каждые N шагов, 0 - отключить",
"Stable Diffusion": "Stable Diffusion",
"Checkpoints to cache in RAM": "Удерживать веса в ОЗУ",
"Hypernetwork strength": "Сила гиперсети",
"Apply color correction to img2img results to match original colors.": "Цветокоррекция вывода рисунка-в-рисунок, сохраняющая исходные цвета",
"Save a copy of image before applying color correction to img2img results": "Сохранить копию рисунка перед цветокоррекцией",
"With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "В режиме рисунок-в-рисунок сделать ровно указанное ползунком число шагов (обычно шумоподавление их уменьшает)",
"Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Включить квантование К-семплерах для более резких и чистых результатов. Может потребовать поменять семя. Требует перезапуска.",
"Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "Скобки: (понятие) - больше внимания к тексту, [понятие] - меньше внимания к тексту",
"Use old emphasis implementation. Can be useful to reproduce old seeds.": "Включить старую обработку скобок. Может потребоваться, чтобы воспроизвести старые семена.",
"Make K-diffusion samplers produce same images in a batch as when making a single image": "Заставить семплеры K-diffusion производить тот же самый рисунок в наборе, как и в единичной генерации",
"Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Увеличить связность, достраивая запрос от последней запятой до n токенов, когда используется свыше 75 токенов",
"Filter NSFW content": "Фильтровать небезопасный контент",
"Stop At last layers of CLIP model": "Остановиться на последних слоях модели CLIP",
"Interrogate Options": "Опции распознавания",
"Interrogate: keep models in VRAM": "Распознавание: хранить модели в ВОЗУ",
"Interrogate: use artists from artists.csv": "Распознавание: использовать художников из artists.csv",
"Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "Распознавание: включить ранжирование совпавших тегов в результате (не работает для распознавателей-создателей заголовков)",
"Interrogate: num_beams for BLIP": "Распознавание: num_beams для BLIP",
"Interrogate: minimum description length (excluding artists, etc..)": "Распознавание: минимальная длина описания (исключая художников и т.п.)",
"Interrogate: maximum description length": "Распознавание: максимальная длина описания",
"CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: максимальное число строк в текстовом файле (0 = без ограничений)",
"Interrogate: deepbooru score threshold": "Распознавание: ограничение счёта deepbooru",
"Interrogate: deepbooru sort alphabetically": "Распознавание: сортировать deepbooru по алфавиту",
"use spaces for tags in deepbooru": "Пробелы для тегов deepbooru",
"escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "Использовать скобки в deepbooru как обычные скобки, а не для усиления",
"User interface": "Пользовательский интерфейс",
"Show progressbar": "Шкала прогресса",
"Show image creation progress every N sampling steps. Set 0 to disable.": "Показывать процесс созданния рисунка каждые N шагов. 0 - отключить",
"Show grid in results for web": "Показать таблицу в выводе браузера",
"Do not show any images in results for web": "Не показывать выходные рисунки в браузере",
"Add model hash to generation information": "Добавить хеш весов к параметрам генерации",
"Add model name to generation information": "Добавить имя весов к параметрам генерации",
"When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "При считывании параметров генерации из текста в интерфейс, не менять выбранную модель/веса.",
"Font for image grids that have text": "Шрифт для таблиц, содержащих текст",
"Enable full page image viewer": "Включить полноэкранный просмотр картинок",
"Show images zoomed in by default in full page image viewer": "По умолчанию увеличивать картинки в полноэкранном просмотре",
"Show generation progress in window title.": "Отображать прогресс в имени вкладки",
"Quicksettings list": "Список быстрых настроек",
"Localization (requires restart)": "Перевод (требует перезапуск)",
"Sampler parameters": "Параметры семплера",
"Hide samplers in user interface (requires restart)": "Убрать семплеры из интерфейса (требует перезапуск)",
"eta (noise multiplier) for DDIM": "eta (множитель шума) DDIM",
"eta (noise multiplier) for ancestral samplers": "eta (множитель шума) для ancestral-семплеров",
"img2img DDIM discretize": "дискретизация DDIM для рисунка-в-рисунок",
"uniform": "однородная",
"quad": "квадратичная",
"sigma churn": "сигма-вариация",
"sigma tmin": "сигма-tmin",
"sigma noise": "сигма-шум",
"Eta noise seed delta": "Eta (дельта шума семени)",
"Images Browser": "Просмотр изображений",
"Preload images at startup": "Предзагружать рисунки во время запуска",
"Number of pictures displayed on each page": "Число рисунков на каждой странице",
"Minimum number of pages per load": "Мин. число загружаемых страниц",
"Number of grids in each row": "Число таблиц в каждой строке",
"Request browser notifications": "Запросить уведомления браузера",
"Download localization template": "Загрузить щаблон перевода",
"Reload custom script bodies (No ui updates, No restart)": "Перезагрузить пользовательские скрипты (не требует обновления интерфейса и перезапуска)",
"Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Перезагрузить Gradio и обновить компоненты (только пользовательские скрипты, ui.py, js и css)",
"Prompt (press Ctrl+Enter or Alt+Enter to generate)": "Запрос (нажмите Ctrl+Enter или Alt+Enter для генерации)",
"Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "Запрос-исключение (нажмите Ctrl+Enter или Alt+Enter для генерации)",
"Add a random artist to the prompt.": "Добавить случайного художника к запросу",
"Read generation parameters from prompt or last generation if prompt is empty into user interface.": "Считать параметры генерации из запроса или из предыдущей генерации в пользовательский интерфейс, если пусто",
"Save style": "Сохранить стиль",
"Apply selected styles to current prompt": "Применить выбранные стили к текущему промпту",
"Stop processing current image and continue processing.": "Прекратить обрабатывать текущий рисунок, но продолжить работу",
"Stop processing images and return any results accumulated so far.": "Прекратить обрабатку рисунков и вернуть всё, что успели сделать.",
"Style to apply; styles have components for both positive and negative prompts and apply to both": "Стиль к применению; стили содержат как запрос, так и исключение, и применяют их оба",
"Do not do anything special": "Не делать ничего особенного",
"Which algorithm to use to produce the image": "Какой алгоритм использовать для того, чтобы произвести рисунок",
"Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - очень творческий, в зависимости от числа шагов может привести совершенно к различным результатам, выше 30-40 лучше не ставить",
"Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit модели - лучше всего для обрисовки",
"Produce an image that can be tiled.": "Сделать из рисунка непрерывную обёртку",
"Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "Применить двушаговый процесс, чтобы создать рисунок на меньшем разрешении, апскейлнуть, а затем улучшить детали без смены композиции",
"Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "Определяет, насколько сильно алгоритм будет опираться на содержание изображения. 0 - не меняет ничего, 1 - совсем не связанный выход. Меньше 1.0 процесс использует меньше шагов, чем указано их ползунком.",
"How many batches of images to create": "Сколько создать наборов из картинок",
"How many image to create in a single batch": "Сколько картинок создать в каждом наборе",
"Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale: насколько сильно изображение должно соответсвтовать запросу — меньшие значения приведут к более свободным итогам",
"A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "Значение, которое определяет выход генератора случайных чисел — если вы создадите рисунок с теми же параметрами и семенем, как у другого изображения, вы получите тот же результат",
"Set seed to -1, which will cause a new random number to be used every time": "Установить семя в -1, что вызовет каждый раз случайное число",
"Reuse seed from last generation, mostly useful if it was randomed": "Использовать семя предыдущей генерации, обычно полезно, если оно было случайным",
"Seed of a different picture to be mixed into the generation.": "Семя с другого рисунка, подмешенного в генерацию.",
"How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "Насколько сильную вариацию произвести. При 0м значении действия не будет. Для 1 вы получите полноценный рисунок с семенем вариации (кроме ancestral-семплеров, где вы просто что-то получите).",
"Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "Попытаться воспроизвести изображение, похожее на то, чтобы получилось с тем же семенем на выбранном разрешении",
"This text is used to rotate the feature space of the imgs embs": "Этот текст используется, чтобы произвести вращение пространства признаков из эмбеддинга рисунков",
"Separate values for X axis using commas.": "Отдельные значения оси X через запятую.",
"Separate values for Y axis using commas.": "Отдельные значения оси Y через запятую.",
"Write image to a directory (default - log/images) and generation parameters into csv file.": "Записать изображение в папку (по-умолчанию - log/images), а параметры генерации - в csv файл",
"Open images output directory": "Открыть папку сохранения изображений",
"How much to blur the mask before processing, in pixels.": "Насколько пикселей размыть трафарет перед обработкой",
"What to put inside the masked area before processing it with Stable Diffusion.": "Что поместить в область под трафаретом перед обработкой Stable Diffusion",
"fill it with colors of the image": "залить цветами изображения",
"keep whatever was there originally": "сохранить то, что было до этого",
"fill it with latent space noise": "залить латентным шумом",
"fill it with latent space zeroes": "залить латентными нулями",
"Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "апскейл до нужного разрешения, врисовка, сжатие до начального размера и вставка в исходный рисунок",
"Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "Масшабировать изображение до нужного разрешения. Если только высота и ширина не совпадают, вы получите неверное соотношение сторон.",
"Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "Масштабировать изображение так, чтобы им заполнялось всё выбранное выходное разрешение. Обрезать выступающие части",
"Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "Масштабировать изображение так, всё изображение помещалось в выбранное выходное разрешение. Заполнить пустое место цветами изображения.",
"How many times to repeat processing an image and using it as input for the next iteration": "Сколько раз повторить обработку изображения и использовать её как вход для следующией итерации",
"In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "В режиме прокрутки, для каждого цикла сила шумоподавления умножается на это значение. <1 уменьшает вариации так, чтобы последовательность сошлась на какой-то одной картинке. >1 увеличивает вариации, так что ваша последовательность станет всё более и более сумбурной.",
"For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "Для SD-апскейла, как много перекрытия в пикселях должно быть между плитками. Плитки перекрываются таким образом, чтобы они могли сойтись обратно в единое изображение, без видимого шва.",
"A directory on the same machine where the server is running.": "Папка на той же машине, где запущен сервер",
"Leave blank to save images to the default path.": "Оставьте пустым, чтобы сохранить рисунки в папку по-умолчанию",
"Result = A * (1 - M) + B * M": "Выход = A * (1 - M) + B * M",
"Result = A + (B - C) * M": "Выход = A + (B - C) * M",
"1st and last digit must be 1. ex:'1, 2, 1'": "1я и последняя цифры должны быть 1. напр.'1, 2, 1'",
"how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "как быстро будет происходить обучение. Меньшие значения увеличат время обучения, но высокие могут нарушить сходимость модели (не будет создавать должные результаты) и/или сломать эмбеддинг. (Это случилось, если вы видете Loss: nan в текстовом окне вывода обучения. В этом случае вам придётся восстанавливать эмбеддинг вручную из старой, не повреждённой резервной копии).\n\nВы также можете указать единичное значение или последовательность из нескольких, используя следующий синтаксис:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nБудет обучаться со скоростью 0.005 первые 100 шагов, затем 1e-3 до 1000 шагов, после 1e-5 для всех оставшихся шагов.",
"Path to directory with input images": "Путь к папке со входными изображениями",
"Path to directory where to write outputs": "Путь к папке, в которую записывать результаты",
"Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Используйте следующие теги, чтобы определить, как подбираются названия файлов для изображений: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; если пусто, используется значение по-умолчанию",
"If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "Когда эта опция включена, на созданные изображения не будет добавляться водяной знак. Предупреждение: не добавляя водяной знак, вы, вероятно, ведёте себя аморально.",
"Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Используйте следующие теги, чтобы определить, как подбираются названия подпапок для рисунков и табоиц: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; если пусто, используется значение по-умолчанию",
"Restore low quality faces using GFPGAN neural network": "Восстановить низкокачественные лица, используя нейросеть GFPGAN",
"This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "Это регулярное выражение будет использовано, чтобы извлечь слова из имени файла, и они будут соединены с текстом в метке ниже как вход во время обучения. Оставьте пустым, чтобы сохранить имя файла как есть",
"This string will be used to join split words into a single line if the option above is enabled.": "Эта строка будет использована, чтобы объединить разделённые слова в одну строку, если включена опция выше.",
"List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "Список имён настроек, разделённый запятыми, предназначенных для быстрого доступа через панель наверху, а не через привычную вкладку настроек. Для применения требует перезапуска.",
"If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "Если это значение не нулевое, оно будет добавлено к семени и использовано для инициалицации ГСЧ шума семплеров с параметром Eta. Вы можете использовать это, чтобы произвести ещё больше вариаций рисунков, либо же для того, чтобы подойти близко к результатам других программ, если знаете, что делаете.",
"Enable Autocomplete": "Включить автодополнение",
"Allowed categories for random artists selection when using the Roll button": "Разрешённые категории художников для случайного выбора при использовании кнопки + три",
"Roll three": "+ три",
"Generate forever": "Непрерывная генерация",
"Cancel generate forever": "Отключить непрерывную генерацию"
}

View file

@ -1,5 +1,5 @@
from modules.api.processing import StableDiffusionProcessingAPI from modules.api.processing import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI
from modules.processing import StableDiffusionProcessingTxt2Img, process_images from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.sd_samplers import all_samplers from modules.sd_samplers import all_samplers
from modules.extras import run_pnginfo from modules.extras import run_pnginfo
import modules.shared as shared import modules.shared as shared
@ -10,6 +10,7 @@ from pydantic import BaseModel, Field, Json
import json import json
import io import io
import base64 import base64
from PIL import Image
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
@ -18,6 +19,11 @@ class TextToImageResponse(BaseModel):
parameters: Json parameters: Json
info: Json info: Json
class ImageToImageResponse(BaseModel):
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
parameters: Json
info: Json
class Api: class Api:
def __init__(self, app, queue_lock): def __init__(self, app, queue_lock):
@ -25,8 +31,17 @@ class Api:
self.app = app self.app = app
self.queue_lock = queue_lock self.queue_lock = queue_lock
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"])
def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ): def __base64_to_image(self, base64_string):
# if has a comma, deal with prefix
if "," in base64_string:
base64_string = base64_string.split(",")[1]
imgdata = base64.b64decode(base64_string)
# convert base64 to PIL image
return Image.open(io.BytesIO(imgdata))
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
sampler_index = sampler_to_index(txt2imgreq.sampler_index) sampler_index = sampler_to_index(txt2imgreq.sampler_index)
if sampler_index is None: if sampler_index is None:
@ -54,8 +69,49 @@ class Api:
def img2imgapi(self): def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
raise NotImplementedError sampler_index = sampler_to_index(img2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
mask = img2imgreq.mask
if mask:
mask = self.__base64_to_image(mask)
populate = img2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
"do_not_save_grid": True,
"mask": mask
}
)
p = StableDiffusionProcessingImg2Img(**vars(populate))
imgs = []
for img in init_images:
img = self.__base64_to_image(img)
imgs = [img] * p.batch_size
p.init_images = imgs
# Override object param
with self.queue_lock:
processed = process_images(p)
b64images = []
for i in processed.images:
buffer = io.BytesIO()
i.save(buffer, format="png")
b64images.append(base64.b64encode(buffer.getvalue()))
return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=json.dumps(processed.info))
def extrasapi(self): def extrasapi(self):
raise NotImplementedError raise NotImplementedError

View file

@ -1,7 +1,8 @@
from array import array
from inflection import underscore from inflection import underscore
from typing import Any, Dict, Optional from typing import Any, Dict, Optional
from pydantic import BaseModel, Field, create_model from pydantic import BaseModel, Field, create_model
from modules.processing import StableDiffusionProcessingTxt2Img from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
import inspect import inspect
@ -92,8 +93,14 @@ class PydanticModelGenerator:
DynamicModel.__config__.allow_mutation = True DynamicModel.__config__.allow_mutation = True
return DynamicModel return DynamicModel
StableDiffusionProcessingAPI = PydanticModelGenerator( StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img", "StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img, StableDiffusionProcessingTxt2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}] [{"key": "sampler_index", "type": str, "default": "Euler"}]
).generate_model() ).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}]
).generate_model()

View file

@ -50,11 +50,12 @@ def create_deepbooru_process(threshold, deepbooru_opts):
the tags. the tags.
""" """
from modules import shared # prevents circular reference from modules import shared # prevents circular reference
shared.deepbooru_process_manager = multiprocessing.Manager() context = multiprocessing.get_context("spawn")
shared.deepbooru_process_manager = context.Manager()
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue() shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict() shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
shared.deepbooru_process_return["value"] = -1 shared.deepbooru_process_return["value"] = -1
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts)) shared.deepbooru_process = context.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
shared.deepbooru_process.start() shared.deepbooru_process.start()

View file

@ -1,7 +1,6 @@
import sys, os, shlex
import contextlib import contextlib
import torch import torch
from modules import errors from modules import errors
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility # has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
@ -9,9 +8,21 @@ has_mps = getattr(torch, 'has_mps', False)
cpu = torch.device("cpu") cpu = torch.device("cpu")
def extract_device_id(args, name):
for x in range(len(args)):
if name in args[x]: return args[x+1]
return None
def get_optimal_device(): def get_optimal_device():
if torch.cuda.is_available(): if torch.cuda.is_available():
from modules import shared
device_id = shared.cmd_opts.device_id
if device_id is not None:
cuda_device = f"cuda:{device_id}"
return torch.device(cuda_device)
else:
return torch.device("cuda") return torch.device("cuda")
if has_mps: if has_mps:
@ -34,7 +45,7 @@ def enable_tf32():
errors.run(enable_tf32, "Enabling TF32") errors.run(enable_tf32, "Enabling TF32")
device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = get_optimal_device() device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = None
dtype = torch.float16 dtype = torch.float16
dtype_vae = torch.float16 dtype_vae = torch.float16

View file

@ -39,9 +39,12 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
if input_dir == '': if input_dir == '':
return outputs, "Please select an input directory.", '' return outputs, "Please select an input directory.", ''
image_list = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)] image_list = [file for file in [os.path.join(input_dir, x) for x in sorted(os.listdir(input_dir))] if os.path.isfile(file)]
for img in image_list: for img in image_list:
try:
image = Image.open(img) image = Image.open(img)
except Exception:
continue
imageArr.append(image) imageArr.append(image)
imageNameArr.append(img) imageNameArr.append(img)
else: else:
@ -119,9 +122,13 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
while len(cached_images) > 2: while len(cached_images) > 2:
del cached_images[next(iter(cached_images.keys()))] del cached_images[next(iter(cached_images.keys()))]
images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True, if opts.use_original_name_batch and image_name != None:
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, basename = os.path.splitext(os.path.basename(image_name))[0]
forced_filename=image_name if opts.use_original_name_batch else None) else:
basename = ''
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
if opts.enable_pnginfo: if opts.enable_pnginfo:
image.info = existing_pnginfo image.info = existing_pnginfo

View file

@ -4,13 +4,22 @@ import gradio as gr
from modules.shared import script_path from modules.shared import script_path
from modules import shared from modules import shared
re_param_code = r"\s*([\w ]+):\s*([^,]+)(?:,|$)" re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code) re_param = re.compile(re_param_code)
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$") re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
re_imagesize = re.compile(r"^(\d+)x(\d+)$") re_imagesize = re.compile(r"^(\d+)x(\d+)$")
type_of_gr_update = type(gr.update()) type_of_gr_update = type(gr.update())
def quote(text):
if ',' not in str(text):
return text
text = str(text)
text = text.replace('\\', '\\\\')
text = text.replace('"', '\\"')
return f'"{text}"'
def parse_generation_parameters(x: str): def parse_generation_parameters(x: str):
"""parses generation parameters string, the one you see in text field under the picture in UI: """parses generation parameters string, the one you see in text field under the picture in UI:
``` ```
@ -83,7 +92,12 @@ def connect_paste(button, paste_fields, input_comp, js=None):
else: else:
try: try:
valtype = type(output.value) valtype = type(output.value)
if valtype == bool and v == "False":
val = False
else:
val = valtype(v) val = valtype(v)
res.append(gr.update(value=val)) res.append(gr.update(value=val))
except Exception: except Exception:
res.append(gr.update()) res.append(gr.update())

View file

@ -1,40 +1,61 @@
import csv
import datetime import datetime
import glob import glob
import html import html
import os import os
import sys import sys
import traceback import traceback
import tqdm
import csv
import torch
from ldm.util import default
from modules import devices, shared, processing, sd_models
import torch
from torch import einsum
from einops import rearrange, repeat
import modules.textual_inversion.dataset import modules.textual_inversion.dataset
import torch
import tqdm
from einops import rearrange, repeat
from ldm.util import default
from modules import devices, processing, sd_models, shared
from modules.textual_inversion import textual_inversion from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
from statistics import stdev, mean
class HypernetworkModule(torch.nn.Module): class HypernetworkModule(torch.nn.Module):
multiplier = 1.0 multiplier = 1.0
activation_dict = {
"relu": torch.nn.ReLU,
"leakyrelu": torch.nn.LeakyReLU,
"elu": torch.nn.ELU,
"swish": torch.nn.Hardswish,
}
def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False): def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
super().__init__() super().__init__()
assert layer_structure is not None, "layer_structure mut not be None" assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
linears = [] linears = []
for i in range(len(layer_structure) - 1): for i in range(len(layer_structure) - 1):
# Add a fully-connected layer
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
# Add an activation func
if activation_func == "linear" or activation_func is None:
pass
elif activation_func in self.activation_dict:
linears.append(self.activation_dict[activation_func]())
else:
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
# Add layer normalization
if add_layer_norm: if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
# Add dropout expect last layer
if use_dropout and i < len(layer_structure) - 3:
linears.append(torch.nn.Dropout(p=0.3))
self.linear = torch.nn.Sequential(*linears) self.linear = torch.nn.Sequential(*linears)
if state_dict is not None: if state_dict is not None:
@ -42,6 +63,7 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict) self.load_state_dict(state_dict)
else: else:
for layer in self.linear: for layer in self.linear:
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer.weight.data.normal_(mean=0.0, std=0.01) layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_() layer.bias.data.zero_()
@ -69,6 +91,7 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self): def trainables(self):
layer_structure = [] layer_structure = []
for layer in self.linear: for layer in self.linear:
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer_structure += [layer.weight, layer.bias] layer_structure += [layer.weight, layer.bias]
return layer_structure return layer_structure
@ -81,7 +104,7 @@ class Hypernetwork:
filename = None filename = None
name = None name = None
def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False): def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
self.filename = None self.filename = None
self.name = name self.name = name
self.layers = {} self.layers = {}
@ -89,12 +112,14 @@ class Hypernetwork:
self.sd_checkpoint = None self.sd_checkpoint = None
self.sd_checkpoint_name = None self.sd_checkpoint_name = None
self.layer_structure = layer_structure self.layer_structure = layer_structure
self.activation_func = activation_func
self.add_layer_norm = add_layer_norm self.add_layer_norm = add_layer_norm
self.use_dropout = use_dropout
for size in enable_sizes or []: for size in enable_sizes or []:
self.layers[size] = ( self.layers[size] = (
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm), HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm), HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
) )
def weights(self): def weights(self):
@ -116,7 +141,9 @@ class Hypernetwork:
state_dict['step'] = self.step state_dict['step'] = self.step
state_dict['name'] = self.name state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure state_dict['layer_structure'] = self.layer_structure
state_dict['activation_func'] = self.activation_func
state_dict['is_layer_norm'] = self.add_layer_norm state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['use_dropout'] = self.use_dropout
state_dict['sd_checkpoint'] = self.sd_checkpoint state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@ -130,13 +157,15 @@ class Hypernetwork:
state_dict = torch.load(filename, map_location='cpu') state_dict = torch.load(filename, map_location='cpu')
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
self.activation_func = state_dict.get('activation_func', None)
self.add_layer_norm = state_dict.get('is_layer_norm', False) self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.use_dropout = state_dict.get('use_dropout', False)
for size, sd in state_dict.items(): for size, sd in state_dict.items():
if type(size) == int: if type(size) == int:
self.layers[size] = ( self.layers[size] = (
HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm), HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm), HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
) )
self.name = state_dict.get('name', self.name) self.name = state_dict.get('name', self.name)
@ -240,7 +269,39 @@ def stack_conds(conds):
return torch.stack(conds) return torch.stack(conds)
def log_statistics(loss_info:dict, key, value):
if key not in loss_info:
loss_info[key] = [value]
else:
loss_info[key].append(value)
if len(loss_info) > 1024:
loss_info.pop(0)
def statistics(data):
total_information = f"loss:{mean(data):.3f}"+u"\u00B1"+f"({stdev(data)/ (len(data)**0.5):.3f})"
recent_data = data[-32:]
recent_information = f"recent 32 loss:{mean(recent_data):.3f}"+u"\u00B1"+f"({stdev(recent_data)/ (len(recent_data)**0.5):.3f})"
return total_information, recent_information
def report_statistics(loss_info:dict):
keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
for key in keys:
try:
print("Loss statistics for file " + key)
info, recent = statistics(loss_info[key])
print(info)
print(recent)
except Exception as e:
print(e)
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
assert hypernetwork_name, 'hypernetwork not selected' assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None) path = shared.hypernetworks.get(hypernetwork_name, None)
@ -279,21 +340,31 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
for weight in weights: for weight in weights:
weight.requires_grad = True weight.requires_grad = True
losses = torch.zeros((32,)) size = len(ds.indexes)
loss_dict = {}
losses = torch.zeros((size,))
previous_mean_loss = 0
print("Mean loss of {} elements".format(size))
last_saved_file = "<none>" last_saved_file = "<none>"
last_saved_image = "<none>" last_saved_image = "<none>"
forced_filename = "<none>"
ititial_step = hypernetwork.step or 0 ititial_step = hypernetwork.step or 0
if ititial_step > steps: if ititial_step > steps:
return hypernetwork, filename return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
steps_without_grad = 0
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar: for i, entries in pbar:
hypernetwork.step = i + ititial_step hypernetwork.step = i + ititial_step
if len(loss_dict) > 0:
previous_mean_loss = sum(i[-1] for i in loss_dict.values()) / len(loss_dict)
scheduler.apply(optimizer, hypernetwork.step) scheduler.apply(optimizer, hypernetwork.step)
if scheduler.finished: if scheduler.finished:
@ -311,26 +382,39 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
del c del c
losses[hypernetwork.step % losses.shape[0]] = loss.item() losses[hypernetwork.step % losses.shape[0]] = loss.item()
for entry in entries:
log_statistics(loss_dict, entry.filename, loss.item())
optimizer.zero_grad() optimizer.zero_grad()
weights[0].grad = None
loss.backward() loss.backward()
if weights[0].grad is None:
steps_without_grad += 1
else:
steps_without_grad = 0
assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
optimizer.step() optimizer.step()
mean_loss = losses.mean()
if torch.isnan(mean_loss): if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
raise RuntimeError("Loss diverged.") raise RuntimeError("Loss diverged.")
pbar.set_description(f"loss: {mean_loss:.7f}") pbar.set_description(f"dataset loss: {previous_mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') # Before saving, change name to match current checkpoint.
hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
hypernetwork.save(last_saved_file) hypernetwork.save(last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{mean_loss:.7f}", "loss": f"{previous_mean_loss:.7f}",
"learn_rate": scheduler.learn_rate "learn_rate": scheduler.learn_rate
}) })
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad() optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device) shared.sd_model.cond_stage_model.to(devices.device)
@ -366,27 +450,29 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if image is not None: if image is not None:
shared.state.current_image = image shared.state.current_image = image
image.save(last_saved_image) last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename)
last_saved_image += f", prompt: {preview_text}" last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step shared.state.job_no = hypernetwork.step
shared.state.textinfo = f""" shared.state.textinfo = f"""
<p> <p>
Loss: {mean_loss:.7f}<br/> Loss: {previous_mean_loss:.7f}<br/>
Step: {hypernetwork.step}<br/> Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/> Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/> Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/> Last saved image: {html.escape(last_saved_image)}<br/>
</p> </p>
""" """
report_statistics(loss_dict)
checkpoint = sd_models.select_checkpoint() checkpoint = sd_models.select_checkpoint()
hypernetwork.sd_checkpoint = checkpoint.hash hypernetwork.sd_checkpoint = checkpoint.hash
hypernetwork.sd_checkpoint_name = checkpoint.model_name hypernetwork.sd_checkpoint_name = checkpoint.model_name
# Before saving for the last time, change name back to the base name (as opposed to the save_hypernetwork_every step-suffixed naming convention).
hypernetwork.name = hypernetwork_name
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork.name}.pt')
hypernetwork.save(filename) hypernetwork.save(filename)
return hypernetwork, filename return hypernetwork, filename

View file

@ -3,15 +3,18 @@ import os
import re import re
import gradio as gr import gradio as gr
import modules.textual_inversion.textual_inversion
import modules.textual_inversion.preprocess import modules.textual_inversion.preprocess
from modules import sd_hijack, shared, devices import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack, shared
from modules.hypernetworks import hypernetwork from modules.hypernetworks import hypernetwork
def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False): def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists" assert not os.path.exists(fn), f"file {fn} already exists"
if type(layer_structure) == str: if type(layer_structure) == str:
@ -21,7 +24,9 @@ def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm
name=name, name=name,
enable_sizes=[int(x) for x in enable_sizes], enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure, layer_structure=layer_structure,
activation_func=activation_func,
add_layer_norm=add_layer_norm, add_layer_norm=add_layer_norm,
use_dropout=use_dropout,
) )
hypernet.save(fn) hypernet.save(fn)

View file

@ -1,183 +1,424 @@
import os import os
import shutil import shutil
import sys import time
import hashlib
import gradio
system_bak_path = "webui_log_and_bak"
custom_tab_name = "custom fold"
faverate_tab_name = "favorites"
tabs_list = ["txt2img", "img2img", "extras", faverate_tab_name]
def is_valid_date(date):
try:
time.strptime(date, "%Y%m%d")
return True
except:
return False
def traverse_all_files(output_dir, image_list, curr_dir=None): def reduplicative_file_move(src, dst):
curr_path = output_dir if curr_dir is None else os.path.join(output_dir, curr_dir) def same_name_file(basename, path):
name, ext = os.path.splitext(basename)
f_list = os.listdir(path)
max_num = 0
for f in f_list:
if len(f) <= len(basename):
continue
f_ext = f[-len(ext):] if len(ext) > 0 else ""
if f[:len(name)] == name and f_ext == ext:
if f[len(name)] == "(" and f[-len(ext)-1] == ")":
number = f[len(name)+1:-len(ext)-1]
if number.isdigit():
if int(number) > max_num:
max_num = int(number)
return f"{name}({max_num + 1}){ext}"
name = os.path.basename(src)
save_name = os.path.join(dst, name)
if not os.path.exists(save_name):
shutil.move(src, dst)
else:
name = same_name_file(name, dst)
shutil.move(src, os.path.join(dst, name))
def traverse_all_files(curr_path, image_list, all_type=False):
try: try:
f_list = os.listdir(curr_path) f_list = os.listdir(curr_path)
except: except:
if curr_dir[-10:].rfind(".") > 0 and curr_dir[-4:] != ".txt": if all_type or (curr_path[-10:].rfind(".") > 0 and curr_path[-4:] != ".txt" and curr_path[-4:] != ".csv"):
image_list.append(curr_dir) image_list.append(curr_path)
return image_list return image_list
for file in f_list: for file in f_list:
file = file if curr_dir is None else os.path.join(curr_dir, file) file = os.path.join(curr_path, file)
file_path = os.path.join(curr_path, file) if (not all_type) and (file[-4:] == ".txt" or file[-4:] == ".csv"):
if file[-4:] == ".txt":
pass pass
elif os.path.isfile(file_path) and file[-10:].rfind(".") > 0: elif os.path.isfile(file) and file[-10:].rfind(".") > 0:
image_list.append(file) image_list.append(file)
else: else:
image_list = traverse_all_files(output_dir, image_list, file) image_list = traverse_all_files(file, image_list)
return image_list return image_list
def auto_sorting(dir_name):
bak_path = os.path.join(dir_name, system_bak_path)
if not os.path.exists(bak_path):
os.mkdir(bak_path)
log_file = None
files_list = []
f_list = os.listdir(dir_name)
for file in f_list:
if file == system_bak_path:
continue
file_path = os.path.join(dir_name, file)
if not is_valid_date(file):
if file[-10:].rfind(".") > 0:
files_list.append(file_path)
else:
files_list = traverse_all_files(file_path, files_list, all_type=True)
def get_recent_images(dir_name, page_index, step, image_index, tabname): for file in files_list:
page_index = int(page_index) date_str = time.strftime("%Y%m%d",time.localtime(os.path.getmtime(file)))
image_list = [] file_path = os.path.dirname(file)
if not os.path.exists(dir_name): hash_path = hashlib.md5(file_path.encode()).hexdigest()
path = os.path.join(dir_name, date_str, hash_path)
if not os.path.exists(path):
os.makedirs(path)
if log_file is None:
log_file = open(os.path.join(bak_path,"path_mapping.csv"),"a")
log_file.write(f"{hash_path},{file_path}\n")
reduplicative_file_move(file, path)
date_list = []
f_list = os.listdir(dir_name)
for f in f_list:
if is_valid_date(f):
date_list.append(f)
elif f == system_bak_path:
continue
else:
try:
reduplicative_file_move(os.path.join(dir_name, f), bak_path)
except:
pass pass
elif os.path.isdir(dir_name):
image_list = traverse_all_files(dir_name, image_list) today = time.strftime("%Y%m%d",time.localtime(time.time()))
image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file))) if today not in date_list:
date_list.append(today)
return sorted(date_list, reverse=True)
def archive_images(dir_name, date_to):
filenames = []
batch_size =int(opts.images_history_num_per_page * opts.images_history_pages_num)
if batch_size <= 0:
batch_size = opts.images_history_num_per_page * 6
today = time.strftime("%Y%m%d",time.localtime(time.time()))
date_to = today if date_to is None or date_to == "" else date_to
date_to_bak = date_to
if False: #opts.images_history_reconstruct_directory:
date_list = auto_sorting(dir_name)
for date in date_list:
if date <= date_to:
path = os.path.join(dir_name, date)
if date == today and not os.path.exists(path):
continue
filenames = traverse_all_files(path, filenames)
if len(filenames) > batch_size:
break
filenames = sorted(filenames, key=lambda file: -os.path.getmtime(file))
else: else:
print(f'ERROR: "{dir_name}" is not a directory. Check the path in the settings.', file=sys.stderr) filenames = traverse_all_files(dir_name, filenames)
num = 48 if tabname != "extras" else 12 total_num = len(filenames)
max_page_index = len(image_list) // num + 1 tmparray = [(os.path.getmtime(file), file) for file in filenames ]
page_index = max_page_index if page_index == -1 else page_index + step date_stamp = time.mktime(time.strptime(date_to, "%Y%m%d")) + 86400
page_index = 1 if page_index < 1 else page_index filenames = []
page_index = max_page_index if page_index > max_page_index else page_index date_list = {date_to:None}
idx_frm = (page_index - 1) * num date = time.strftime("%Y%m%d",time.localtime(time.time()))
image_list = image_list[idx_frm:idx_frm + num] for t, f in tmparray:
image_index = int(image_index) date = time.strftime("%Y%m%d",time.localtime(t))
if image_index < 0 or image_index > len(image_list) - 1: date_list[date] = None
current_file = None if t <= date_stamp:
hidden = None filenames.append((t, f ,date))
date_list = sorted(list(date_list.keys()), reverse=True)
sort_array = sorted(filenames, key=lambda x:-x[0])
if len(sort_array) > batch_size:
date = sort_array[batch_size][2]
filenames = [x[1] for x in sort_array]
else: else:
current_file = image_list[int(image_index)] date = date_to if len(sort_array) == 0 else sort_array[-1][2]
hidden = os.path.join(dir_name, current_file) filenames = [x[1] for x in sort_array]
return [os.path.join(dir_name, file) for file in image_list], page_index, image_list, current_file, hidden, "" filenames = [x[1] for x in sort_array if x[2]>= date]
num = len(filenames)
last_date_from = date_to_bak if num == 0 else time.strftime("%Y%m%d", time.localtime(time.mktime(time.strptime(date, "%Y%m%d")) - 1000))
date = date[:4] + "/" + date[4:6] + "/" + date[6:8]
date_to_bak = date_to_bak[:4] + "/" + date_to_bak[4:6] + "/" + date_to_bak[6:8]
load_info = "<div style='color:#999' align='center'>"
load_info += f"{total_num} images in this directory. Loaded {num} images during {date} - {date_to_bak}, divided into {int((num + 1) // opts.images_history_num_per_page + 1)} pages"
load_info += "</div>"
_, image_list, _, _, visible_num = get_recent_images(1, 0, filenames)
return (
date_to,
load_info,
filenames,
1,
image_list,
"",
"",
visible_num,
last_date_from,
gradio.update(visible=total_num > num)
)
def delete_image(delete_num, name, filenames, image_index, visible_num):
def first_page_click(dir_name, page_index, image_index, tabname):
return get_recent_images(dir_name, 1, 0, image_index, tabname)
def end_page_click(dir_name, page_index, image_index, tabname):
return get_recent_images(dir_name, -1, 0, image_index, tabname)
def prev_page_click(dir_name, page_index, image_index, tabname):
return get_recent_images(dir_name, page_index, -1, image_index, tabname)
def next_page_click(dir_name, page_index, image_index, tabname):
return get_recent_images(dir_name, page_index, 1, image_index, tabname)
def page_index_change(dir_name, page_index, image_index, tabname):
return get_recent_images(dir_name, page_index, 0, image_index, tabname)
def show_image_info(num, image_path, filenames):
# print(f"select image {num}")
file = filenames[int(num)]
return file, num, os.path.join(image_path, file)
def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, image_index):
if name == "": if name == "":
return filenames, delete_num return filenames, delete_num
else: else:
delete_num = int(delete_num) delete_num = int(delete_num)
visible_num = int(visible_num)
image_index = int(image_index)
index = list(filenames).index(name) index = list(filenames).index(name)
i = 0 i = 0
new_file_list = [] new_file_list = []
for name in filenames: for name in filenames:
if i >= index and i < index + delete_num: if i >= index and i < index + delete_num:
path = os.path.join(dir_name, name) if os.path.exists(name):
if os.path.exists(path): if visible_num == image_index:
print(f"Delete file {path}") new_file_list.append(name)
os.remove(path) i += 1
txt_file = os.path.splitext(path)[0] + ".txt" continue
print(f"Delete file {name}")
os.remove(name)
visible_num -= 1
txt_file = os.path.splitext(name)[0] + ".txt"
if os.path.exists(txt_file): if os.path.exists(txt_file):
os.remove(txt_file) os.remove(txt_file)
else: else:
print(f"Not exists file {path}") print(f"Not exists file {name}")
else: else:
new_file_list.append(name) new_file_list.append(name)
i += 1 i += 1
return new_file_list, 1 return new_file_list, 1, visible_num
def save_image(file_name):
if file_name is not None and os.path.exists(file_name):
shutil.copy(file_name, opts.outdir_save)
def get_recent_images(page_index, step, filenames):
page_index = int(page_index)
num_of_imgs_per_page = int(opts.images_history_num_per_page)
max_page_index = len(filenames) // num_of_imgs_per_page + 1
page_index = max_page_index if page_index == -1 else page_index + step
page_index = 1 if page_index < 1 else page_index
page_index = max_page_index if page_index > max_page_index else page_index
idx_frm = (page_index - 1) * num_of_imgs_per_page
image_list = filenames[idx_frm:idx_frm + num_of_imgs_per_page]
length = len(filenames)
visible_num = num_of_imgs_per_page if idx_frm + num_of_imgs_per_page <= length else length % num_of_imgs_per_page
visible_num = num_of_imgs_per_page if visible_num == 0 else visible_num
return page_index, image_list, "", "", visible_num
def loac_batch_click(date_to):
if date_to is None:
return time.strftime("%Y%m%d",time.localtime(time.time())), []
else:
return None, []
def forward_click(last_date_from, date_to_recorder):
if len(date_to_recorder) == 0:
return None, []
if last_date_from == date_to_recorder[-1]:
date_to_recorder = date_to_recorder[:-1]
if len(date_to_recorder) == 0:
return None, []
return date_to_recorder[-1], date_to_recorder[:-1]
def backward_click(last_date_from, date_to_recorder):
if last_date_from is None or last_date_from == "":
return time.strftime("%Y%m%d",time.localtime(time.time())), []
if len(date_to_recorder) == 0 or last_date_from != date_to_recorder[-1]:
date_to_recorder.append(last_date_from)
return last_date_from, date_to_recorder
def first_page_click(page_index, filenames):
return get_recent_images(1, 0, filenames)
def end_page_click(page_index, filenames):
return get_recent_images(-1, 0, filenames)
def prev_page_click(page_index, filenames):
return get_recent_images(page_index, -1, filenames)
def next_page_click(page_index, filenames):
return get_recent_images(page_index, 1, filenames)
def page_index_change(page_index, filenames):
return get_recent_images(page_index, 0, filenames)
def show_image_info(tabname_box, num, page_index, filenames):
file = filenames[int(num) + int((page_index - 1) * int(opts.images_history_num_per_page))]
tm = "<div style='color:#999' align='right'>" + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(os.path.getmtime(file))) + "</div>"
return file, tm, num, file
def enable_page_buttons():
return gradio.update(visible=True)
def change_dir(img_dir, date_to):
warning = None
try:
if os.path.exists(img_dir):
try:
f = os.listdir(img_dir)
except:
warning = f"'{img_dir} is not a directory"
else:
warning = "The directory is not exist"
except:
warning = "The format of the directory is incorrect"
if warning is None:
today = time.strftime("%Y%m%d",time.localtime(time.time()))
return gradio.update(visible=False), gradio.update(visible=True), None, None if date_to != today else today, gradio.update(visible=True), gradio.update(visible=True)
else:
return gradio.update(visible=True), gradio.update(visible=False), warning, date_to, gradio.update(visible=False), gradio.update(visible=False)
def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
if opts.outdir_samples != "": custom_dir = False
dir_name = opts.outdir_samples if tabname == "txt2img":
elif tabname == "txt2img":
dir_name = opts.outdir_txt2img_samples dir_name = opts.outdir_txt2img_samples
elif tabname == "img2img": elif tabname == "img2img":
dir_name = opts.outdir_img2img_samples dir_name = opts.outdir_img2img_samples
elif tabname == "extras": elif tabname == "extras":
dir_name = opts.outdir_extras_samples dir_name = opts.outdir_extras_samples
elif tabname == faverate_tab_name:
dir_name = opts.outdir_save
else: else:
return custom_dir = True
dir_name = None
if not custom_dir:
d = dir_name.split("/")
dir_name = d[0]
for p in d[1:]:
dir_name = os.path.join(dir_name, p)
if not os.path.exists(dir_name):
os.makedirs(dir_name)
with gr.Column() as page_panel:
with gr.Row(): with gr.Row():
renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page") with gr.Column(scale=1, visible=not custom_dir) as load_batch_box:
load_batch = gr.Button('Load', elem_id=tabname + "_images_history_start", full_width=True)
with gr.Column(scale=4):
with gr.Row():
img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory", interactive=custom_dir)
with gr.Row():
with gr.Column(visible=False, scale=1) as batch_panel:
with gr.Row():
forward = gr.Button('Prev batch')
backward = gr.Button('Next batch')
with gr.Column(scale=3):
load_info = gr.HTML(visible=not custom_dir)
with gr.Row(visible=False) as warning:
warning_box = gr.Textbox("Message", interactive=False)
with gr.Row(visible=not custom_dir, elem_id=tabname + "_images_history") as main_panel:
with gr.Column(scale=2):
with gr.Row(visible=True) as turn_page_buttons:
#date_to = gr.Dropdown(label="Date to")
first_page = gr.Button('First Page') first_page = gr.Button('First Page')
prev_page = gr.Button('Prev Page') prev_page = gr.Button('Prev Page')
page_index = gr.Number(value=1, label="Page Index") page_index = gr.Number(value=1, label="Page Index")
next_page = gr.Button('Next Page') next_page = gr.Button('Next Page')
end_page = gr.Button('End Page') end_page = gr.Button('End Page')
with gr.Row(elem_id=tabname + "_images_history"):
with gr.Row(): history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=opts.images_history_grid_num)
with gr.Column(scale=2):
history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6)
with gr.Row(): with gr.Row():
delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next") delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button") delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
with gr.Column(): with gr.Column():
with gr.Row(): with gr.Row():
with gr.Column():
img_file_info = gr.Textbox(label="Generate Info", interactive=False, lines=6)
gr.HTML("<hr>")
img_file_name = gr.Textbox(value="", label="File Name", interactive=False)
img_file_time= gr.HTML()
with gr.Row():
if tabname != faverate_tab_name:
save_btn = gr.Button('Collect')
pnginfo_send_to_txt2img = gr.Button('Send to txt2img') pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
pnginfo_send_to_img2img = gr.Button('Send to img2img') pnginfo_send_to_img2img = gr.Button('Send to img2img')
with gr.Row():
with gr.Column():
img_file_info = gr.Textbox(label="Generate Info", interactive=False)
img_file_name = gr.Textbox(label="File Name", interactive=False)
with gr.Row():
# hiden items # hiden items
with gr.Row(visible=False):
img_path = gr.Textbox(dir_name.rstrip("/"), visible=False) renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page")
tabname_box = gr.Textbox(tabname, visible=False) batch_date_to = gr.Textbox(label="Date to")
image_index = gr.Textbox(value=-1, visible=False) visible_img_num = gr.Number()
set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index", visible=False) date_to_recorder = gr.State([])
last_date_from = gr.Textbox()
tabname_box = gr.Textbox(tabname)
image_index = gr.Textbox(value=-1)
set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index")
filenames = gr.State() filenames = gr.State()
hidden = gr.Image(type="pil", visible=False) all_images_list = gr.State()
info1 = gr.Textbox(visible=False) hidden = gr.Image(type="pil")
info2 = gr.Textbox(visible=False) info1 = gr.Textbox()
info2 = gr.Textbox()
# turn pages img_path.submit(change_dir, inputs=[img_path, batch_date_to], outputs=[warning, main_panel, warning_box, batch_date_to, load_batch_box, load_info])
gallery_inputs = [img_path, page_index, image_index, tabname_box]
gallery_outputs = [history_gallery, page_index, filenames, img_file_name, hidden, img_file_name]
first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) #change batch
next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) change_date_output = [batch_date_to, load_info, filenames, page_index, history_gallery, img_file_name, img_file_time, visible_img_num, last_date_from, batch_panel]
prev_page.click(prev_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
end_page.click(end_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) batch_date_to.change(archive_images, inputs=[img_path, batch_date_to], outputs=change_date_output)
page_index.submit(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) batch_date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons])
renew_page.click(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) batch_date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
# page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index])
load_batch.click(loac_batch_click, inputs=[batch_date_to], outputs=[batch_date_to, date_to_recorder])
forward.click(forward_click, inputs=[last_date_from, date_to_recorder], outputs=[batch_date_to, date_to_recorder])
backward.click(backward_click, inputs=[last_date_from, date_to_recorder], outputs=[batch_date_to, date_to_recorder])
#delete
delete.click(delete_image, inputs=[delete_num, img_file_name, filenames, image_index, visible_img_num], outputs=[filenames, delete_num, visible_img_num])
delete.click(fn=None, _js="images_history_delete", inputs=[delete_num, tabname_box, image_index], outputs=None)
if tabname != faverate_tab_name:
save_btn.click(save_image, inputs=[img_file_name], outputs=None)
#turn page
gallery_inputs = [page_index, filenames]
gallery_outputs = [page_index, history_gallery, img_file_name, img_file_time, visible_img_num]
first_page.click(first_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
next_page.click(next_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
prev_page.click(prev_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
end_page.click(end_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
page_index.submit(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs)
renew_page.click(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs)
first_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
next_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
prev_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
end_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
page_index.submit(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
renew_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
# other funcitons # other funcitons
set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, img_path, filenames], outputs=[img_file_name, image_index, hidden]) set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, img_file_time, image_index, hidden])
img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None) img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_path, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num])
hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2]) hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
# pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img') switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img')
switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img') switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img')
def create_history_tabs(gr, opts, run_pnginfo, switch_dict):
def create_history_tabs(gr, sys_opts, cmp_ops, run_pnginfo, switch_dict):
global opts;
opts = sys_opts
loads_files_num = int(opts.images_history_num_per_page)
num_of_imgs_per_page = int(opts.images_history_num_per_page * opts.images_history_pages_num)
if cmp_ops.browse_all_images:
tabs_list.append(custom_tab_name)
with gr.Blocks(analytics_enabled=False) as images_history: with gr.Blocks(analytics_enabled=False) as images_history:
with gr.Tabs() as tabs: with gr.Tabs() as tabs:
with gr.Tab("txt2img history"): for tab in tabs_list:
with gr.Blocks(analytics_enabled=False) as images_history_txt2img: with gr.Tab(tab):
show_images_history(gr, opts, "txt2img", run_pnginfo, switch_dict) with gr.Blocks(analytics_enabled=False) :
with gr.Tab("img2img history"): show_images_history(gr, opts, tab, run_pnginfo, switch_dict)
with gr.Blocks(analytics_enabled=False) as images_history_img2img: gradio.Checkbox(opts.images_history_preload, elem_id="images_history_preload", visible=False)
show_images_history(gr, opts, "img2img", run_pnginfo, switch_dict) gradio.Textbox(",".join(tabs_list), elem_id="images_history_tabnames_list", visible=False)
with gr.Tab("extras history"):
with gr.Blocks(analytics_enabled=False) as images_history_img2img:
show_images_history(gr, opts, "extras", run_pnginfo, switch_dict)
return images_history return images_history

View file

@ -109,6 +109,9 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
inpainting_mask_invert=inpainting_mask_invert, inpainting_mask_invert=inpainting_mask_invert,
) )
p.scripts = modules.scripts.scripts_txt2img
p.script_args = args
if shared.cmd_opts.enable_console_prompts: if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out) print(f"\nimg2img: {prompt}", file=shared.progress_print_out)

View file

@ -28,9 +28,11 @@ class InterrogateModels:
clip_preprocess = None clip_preprocess = None
categories = None categories = None
dtype = None dtype = None
running_on_cpu = None
def __init__(self, content_dir): def __init__(self, content_dir):
self.categories = [] self.categories = []
self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
if os.path.exists(content_dir): if os.path.exists(content_dir):
for filename in os.listdir(content_dir): for filename in os.listdir(content_dir):
@ -53,7 +55,11 @@ class InterrogateModels:
def load_clip_model(self): def load_clip_model(self):
import clip import clip
if self.running_on_cpu:
model, preprocess = clip.load(clip_model_name, device="cpu")
else:
model, preprocess = clip.load(clip_model_name) model, preprocess = clip.load(clip_model_name)
model.eval() model.eval()
model = model.to(devices.device_interrogate) model = model.to(devices.device_interrogate)
@ -62,14 +68,14 @@ class InterrogateModels:
def load(self): def load(self):
if self.blip_model is None: if self.blip_model is None:
self.blip_model = self.load_blip_model() self.blip_model = self.load_blip_model()
if not shared.cmd_opts.no_half: if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.blip_model = self.blip_model.half() self.blip_model = self.blip_model.half()
self.blip_model = self.blip_model.to(devices.device_interrogate) self.blip_model = self.blip_model.to(devices.device_interrogate)
if self.clip_model is None: if self.clip_model is None:
self.clip_model, self.clip_preprocess = self.load_clip_model() self.clip_model, self.clip_preprocess = self.load_clip_model()
if not shared.cmd_opts.no_half: if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.clip_model = self.clip_model.half() self.clip_model = self.clip_model.half()
self.clip_model = self.clip_model.to(devices.device_interrogate) self.clip_model = self.clip_model.to(devices.device_interrogate)

View file

@ -1,9 +1,8 @@
import torch import torch
from modules.devices import get_optimal_device from modules import devices
module_in_gpu = None module_in_gpu = None
cpu = torch.device("cpu") cpu = torch.device("cpu")
device = gpu = get_optimal_device()
def send_everything_to_cpu(): def send_everything_to_cpu():
@ -33,7 +32,7 @@ def setup_for_low_vram(sd_model, use_medvram):
if module_in_gpu is not None: if module_in_gpu is not None:
module_in_gpu.to(cpu) module_in_gpu.to(cpu)
module.to(gpu) module.to(devices.device)
module_in_gpu = module module_in_gpu = module
# see below for register_forward_pre_hook; # see below for register_forward_pre_hook;
@ -51,7 +50,7 @@ def setup_for_low_vram(sd_model, use_medvram):
# send the model to GPU. Then put modules back. the modules will be in CPU. # send the model to GPU. Then put modules back. the modules will be in CPU.
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None
sd_model.to(device) sd_model.to(devices.device)
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored
# register hooks for those the first two models # register hooks for those the first two models
@ -70,7 +69,7 @@ def setup_for_low_vram(sd_model, use_medvram):
# so that only one of them is in GPU at a time # so that only one of them is in GPU at a time
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
sd_model.model.to(device) sd_model.model.to(devices.device)
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored
# install hooks for bits of third model # install hooks for bits of third model

View file

@ -12,7 +12,7 @@ from skimage import exposure
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
import modules.sd_hijack import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste
from modules.sd_hijack import model_hijack from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state from modules.shared import opts, cmd_opts, state
import modules.shared as shared import modules.shared as shared
@ -104,6 +104,12 @@ class StableDiffusionProcessing():
self.seed_resize_from_h = 0 self.seed_resize_from_h = 0
self.seed_resize_from_w = 0 self.seed_resize_from_w = 0
self.scripts = None
self.script_args = None
self.all_prompts = None
self.all_seeds = None
self.all_subseeds = None
def init(self, all_prompts, all_seeds, all_subseeds): def init(self, all_prompts, all_seeds, all_subseeds):
pass pass
@ -304,7 +310,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Size": f"{p.width}x{p.height}", "Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')), "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.filename.split('\\')[-1].split('.')[0]), "Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
"Batch size": (None if p.batch_size < 2 else p.batch_size), "Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch), "Batch pos": (None if p.batch_size < 2 else position_in_batch),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
@ -318,7 +324,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params.update(p.extra_generation_params) generation_params.update(p.extra_generation_params)
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None]) generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else "" negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
@ -350,32 +356,35 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
shared.prompt_styles.apply_styles(p) shared.prompt_styles.apply_styles(p)
if type(p.prompt) == list: if type(p.prompt) == list:
all_prompts = p.prompt p.all_prompts = p.prompt
else: else:
all_prompts = p.batch_size * p.n_iter * [p.prompt] p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
if type(seed) == list: if type(seed) == list:
all_seeds = seed p.all_seeds = seed
else: else:
all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))] p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
if type(subseed) == list: if type(subseed) == list:
all_subseeds = subseed p.all_subseeds = subseed
else: else:
all_subseeds = [int(subseed) + x for x in range(len(all_prompts))] p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0): def infotext(iteration=0, position_in_batch=0):
return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch) return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings() model_hijack.embedding_db.load_textual_inversion_embeddings()
if p.scripts is not None:
p.scripts.run_alwayson_scripts(p)
infotexts = [] infotexts = []
output_images = [] output_images = []
with torch.no_grad(), p.sd_model.ema_scope(): with torch.no_grad(), p.sd_model.ema_scope():
with devices.autocast(): with devices.autocast():
p.init(all_prompts, all_seeds, all_subseeds) p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
if state.job_count == -1: if state.job_count == -1:
state.job_count = p.n_iter state.job_count = p.n_iter
@ -387,15 +396,13 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if state.interrupted: if state.interrupted:
break break
prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size] prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size] seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
if (len(prompts) == 0): if (len(prompts) == 0):
break break
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
#c = p.sd_model.get_learned_conditioning(prompts)
with devices.autocast(): with devices.autocast():
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps) uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps) c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
@ -490,10 +497,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
index_of_first_image = 1 index_of_first_image = 1
if opts.grid_save: if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
devices.torch_gc() devices.torch_gc()
return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts) return Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
@ -515,6 +522,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
else: else:
state.job_count = state.job_count * 2 state.job_count = state.job_count * 2
self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
if self.firstphase_width == 0 or self.firstphase_height == 0: if self.firstphase_width == 0 or self.firstphase_height == 0:
desired_pixel_count = 512 * 512 desired_pixel_count = 512 * 512
actual_pixel_count = self.width * self.height actual_pixel_count = self.width * self.height
@ -536,21 +545,40 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
firstphase_width_truncated = self.firstphase_height * self.width / self.height firstphase_width_truncated = self.firstphase_height * self.width / self.height
firstphase_height_truncated = self.firstphase_height firstphase_height_truncated = self.firstphase_height
self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
def create_dummy_mask(self, x, width=None, height=None):
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
height = height or self.height
width = width or self.width
# The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
# Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
else:
# Dummy zero conditioning if we're not using inpainting model.
# Still takes up a bit of memory, but no encoder call.
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
image_conditioning = torch.zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
return image_conditioning
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr: if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x))
return samples return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x, self.firstphase_width, self.firstphase_height))
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2] samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
@ -587,7 +615,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x = None x = None
devices.torch_gc() devices.torch_gc()
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps) samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=self.create_dummy_mask(samples))
return samples return samples
@ -595,7 +623,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None sampler = None
def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs): def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: Any=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
self.init_images = init_images self.init_images = init_images
@ -613,6 +641,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.inpainting_mask_invert = inpainting_mask_invert self.inpainting_mask_invert = inpainting_mask_invert
self.mask = None self.mask = None
self.nmask = None self.nmask = None
self.image_conditioning = None
def init(self, all_prompts, all_seeds, all_subseeds): def init(self, all_prompts, all_seeds, all_subseeds):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model) self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
@ -685,6 +714,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0) batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
if self.overlay_images is not None: if self.overlay_images is not None:
self.overlay_images = self.overlay_images * self.batch_size self.overlay_images = self.overlay_images * self.batch_size
if self.color_corrections is not None and len(self.color_corrections) == 1:
self.color_corrections = self.color_corrections * self.batch_size
elif len(imgs) <= self.batch_size: elif len(imgs) <= self.batch_size:
self.batch_size = len(imgs) self.batch_size = len(imgs)
batch_images = np.array(imgs) batch_images = np.array(imgs)
@ -714,10 +747,39 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3: elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask self.init_latent = self.init_latent * self.mask
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
if self.image_mask is not None:
conditioning_mask = np.array(self.image_mask.convert("L"))
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
conditioning_mask = torch.round(conditioning_mask)
else:
conditioning_mask = torch.ones(1, 1, *image.shape[-2:])
# Create another latent image, this time with a masked version of the original input.
conditioning_mask = conditioning_mask.to(image.device)
conditioning_image = image * (1.0 - conditioning_mask)
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
# Create the concatenated conditioning tensor to be fed to `c_concat`
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=self.init_latent.shape[-2:])
conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
self.image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
else:
self.image_conditioning = torch.zeros(
self.init_latent.shape[0], 5, 1, 1,
dtype=self.init_latent.dtype,
device=self.init_latent.device
)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning) samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None: if self.mask is not None:
samples = samples * self.nmask + self.init_latent * self.mask samples = samples * self.nmask + self.init_latent * self.mask

View file

@ -0,0 +1,53 @@
callbacks_model_loaded = []
callbacks_ui_tabs = []
callbacks_ui_settings = []
def clear_callbacks():
callbacks_model_loaded.clear()
callbacks_ui_tabs.clear()
def model_loaded_callback(sd_model):
for callback in callbacks_model_loaded:
callback(sd_model)
def ui_tabs_callback():
res = []
for callback in callbacks_ui_tabs:
res += callback() or []
return res
def ui_settings_callback():
for callback in callbacks_ui_settings:
callback()
def on_model_loaded(callback):
"""register a function to be called when the stable diffusion model is created; the model is
passed as an argument"""
callbacks_model_loaded.append(callback)
def on_ui_tabs(callback):
"""register a function to be called when the UI is creating new tabs.
The function must either return a None, which means no new tabs to be added, or a list, where
each element is a tuple:
(gradio_component, title, elem_id)
gradio_component is a gradio component to be used for contents of the tab (usually gr.Blocks)
title is tab text displayed to user in the UI
elem_id is HTML id for the tab
"""
callbacks_ui_tabs.append(callback)
def on_ui_settings(callback):
"""register a function to be called before UI settings are populated; add your settings
by using shared.opts.add_option(shared.OptionInfo(...)) """
callbacks_ui_settings.append(callback)

View file

@ -1,86 +1,175 @@
import os import os
import sys import sys
import traceback import traceback
from collections import namedtuple
import modules.ui as ui import modules.ui as ui
import gradio as gr import gradio as gr
from modules.processing import StableDiffusionProcessing from modules.processing import StableDiffusionProcessing
from modules import shared from modules import shared, paths, script_callbacks
AlwaysVisible = object()
class Script: class Script:
filename = None filename = None
args_from = None args_from = None
args_to = None args_to = None
alwayson = False
infotext_fields = None
"""if set in ui(), this is a list of pairs of gradio component + text; the text will be used when
parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
"""
# The title of the script. This is what will be displayed in the dropdown menu.
def title(self): def title(self):
"""this function should return the title of the script. This is what will be displayed in the dropdown menu."""
raise NotImplementedError() raise NotImplementedError()
# How the script is displayed in the UI. See https://gradio.app/docs/#components
# for the different UI components you can use and how to create them.
# Most UI components can return a value, such as a boolean for a checkbox.
# The returned values are passed to the run method as parameters.
def ui(self, is_img2img): def ui(self, is_img2img):
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be an array of all components that are used in processing.
Values of those returned componenbts will be passed to run() and process() functions.
"""
pass pass
# Determines when the script should be shown in the dropdown menu via the
# returned value. As an example:
# is_img2img is True if the current tab is img2img, and False if it is txt2img.
# Thus, return is_img2img to only show the script on the img2img tab.
def show(self, is_img2img): def show(self, is_img2img):
"""
is_img2img is True if this function is called for the img2img interface, and Fasle otherwise
This function should return:
- False if the script should not be shown in UI at all
- True if the script should be shown in UI if it's scelected in the scripts drowpdown
- script.AlwaysVisible if the script should be shown in UI at all times
"""
return True return True
# This is where the additional processing is implemented. The parameters include def run(self, p, *args):
# self, the model object "p" (a StableDiffusionProcessing class, see """
# processing.py), and the parameters returned by the ui method. This function is called if the script has been selected in the script dropdown.
# Custom functions can be defined here, and additional libraries can be imported It must do all processing and return the Processed object with results, same as
# to be used in processing. The return value should be a Processed object, which is one returned by processing.process_images.
# what is returned by the process_images method.
def run(self, *args): Usually the processing is done by calling the processing.process_images function.
args contains all values returned by components from ui()
"""
raise NotImplementedError() raise NotImplementedError()
# The description method is currently unused. def process(self, p, *args):
# To add a description that appears when hovering over the title, amend the "titles" """
# dict in script.js to include the script title (returned by title) as a key, and This function is called before processing begins for AlwaysVisible scripts.
# your description as the value. scripts. You can modify the processing object (p) here, inject hooks, etc.
"""
pass
def describe(self): def describe(self):
"""unused"""
return "" return ""
current_basedir = paths.script_path
def basedir():
"""returns the base directory for the current script. For scripts in the main scripts directory,
this is the main directory (where webui.py resides), and for scripts in extensions directory
(ie extensions/aesthetic/script/aesthetic.py), this is extension's directory (extensions/aesthetic)
"""
return current_basedir
scripts_data = [] scripts_data = []
ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir"])
def load_scripts(basedir): def list_scripts(scriptdirname, extension):
if not os.path.exists(basedir): scripts_list = []
return
basedir = os.path.join(paths.script_path, scriptdirname)
if os.path.exists(basedir):
for filename in sorted(os.listdir(basedir)): for filename in sorted(os.listdir(basedir)):
path = os.path.join(basedir, filename) scripts_list.append(ScriptFile(paths.script_path, filename, os.path.join(basedir, filename)))
if os.path.splitext(path)[1].lower() != '.py': extdir = os.path.join(paths.script_path, "extensions")
if os.path.exists(extdir):
for dirname in sorted(os.listdir(extdir)):
dirpath = os.path.join(extdir, dirname)
scriptdirpath = os.path.join(dirpath, scriptdirname)
if not os.path.isdir(scriptdirpath):
continue continue
if not os.path.isfile(path): for filename in sorted(os.listdir(scriptdirpath)):
scripts_list.append(ScriptFile(dirpath, filename, os.path.join(scriptdirpath, filename)))
scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
return scripts_list
def list_files_with_name(filename):
res = []
dirs = [paths.script_path]
extdir = os.path.join(paths.script_path, "extensions")
if os.path.exists(extdir):
dirs += [os.path.join(extdir, d) for d in sorted(os.listdir(extdir))]
for dirpath in dirs:
if not os.path.isdir(dirpath):
continue continue
path = os.path.join(dirpath, filename)
if os.path.isfile(filename):
res.append(path)
return res
def load_scripts():
global current_basedir
scripts_data.clear()
script_callbacks.clear_callbacks()
scripts_list = list_scripts("scripts", ".py")
syspath = sys.path
for scriptfile in sorted(scripts_list):
try: try:
with open(path, "r", encoding="utf8") as file: if scriptfile.basedir != paths.script_path:
sys.path = [scriptfile.basedir] + sys.path
current_basedir = scriptfile.basedir
with open(scriptfile.path, "r", encoding="utf8") as file:
text = file.read() text = file.read()
from types import ModuleType from types import ModuleType
compiled = compile(text, path, 'exec') compiled = compile(text, scriptfile.path, 'exec')
module = ModuleType(filename) module = ModuleType(scriptfile.filename)
exec(compiled, module.__dict__) exec(compiled, module.__dict__)
for key, script_class in module.__dict__.items(): for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script): if type(script_class) == type and issubclass(script_class, Script):
scripts_data.append((script_class, path)) scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir))
except Exception: except Exception:
print(f"Error loading script: {filename}", file=sys.stderr) print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
finally:
sys.path = syspath
current_basedir = paths.script_path
def wrap_call(func, filename, funcname, *args, default=None, **kwargs): def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try: try:
@ -96,56 +185,80 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
class ScriptRunner: class ScriptRunner:
def __init__(self): def __init__(self):
self.scripts = [] self.scripts = []
self.selectable_scripts = []
self.alwayson_scripts = []
self.titles = [] self.titles = []
self.infotext_fields = []
def setup_ui(self, is_img2img): def setup_ui(self, is_img2img):
for script_class, path in scripts_data: for script_class, path, basedir in scripts_data:
script = script_class() script = script_class()
script.filename = path script.filename = path
if not script.show(is_img2img): visibility = script.show(is_img2img)
continue
if visibility == AlwaysVisible:
self.scripts.append(script) self.scripts.append(script)
self.alwayson_scripts.append(script)
script.alwayson = True
self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts] elif visibility:
self.scripts.append(script)
self.selectable_scripts.append(script)
dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index") self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
dropdown.save_to_config = True
inputs = [dropdown]
for script in self.scripts: inputs = [None]
inputs_alwayson = [True]
def create_script_ui(script, inputs, inputs_alwayson):
script.args_from = len(inputs) script.args_from = len(inputs)
script.args_to = len(inputs) script.args_to = len(inputs)
controls = wrap_call(script.ui, script.filename, "ui", is_img2img) controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
if controls is None: if controls is None:
continue return
for control in controls: for control in controls:
control.custom_script_source = os.path.basename(script.filename) control.custom_script_source = os.path.basename(script.filename)
if not script.alwayson:
control.visible = False control.visible = False
if script.infotext_fields is not None:
self.infotext_fields += script.infotext_fields
inputs += controls inputs += controls
inputs_alwayson += [script.alwayson for _ in controls]
script.args_to = len(inputs) script.args_to = len(inputs)
for script in self.alwayson_scripts:
with gr.Group():
create_script_ui(script, inputs, inputs_alwayson)
dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index")
dropdown.save_to_config = True
inputs[0] = dropdown
for script in self.selectable_scripts:
create_script_ui(script, inputs, inputs_alwayson)
def select_script(script_index): def select_script(script_index):
if 0 < script_index <= len(self.scripts): if 0 < script_index <= len(self.selectable_scripts):
script = self.scripts[script_index-1] script = self.selectable_scripts[script_index-1]
args_from = script.args_from args_from = script.args_from
args_to = script.args_to args_to = script.args_to
else: else:
args_from = 0 args_from = 0
args_to = 0 args_to = 0
return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))] return [ui.gr_show(True if i == 0 else args_from <= i < args_to or is_alwayson) for i, is_alwayson in enumerate(inputs_alwayson)]
def init_field(title): def init_field(title):
if title == 'None': if title == 'None':
return return
script_index = self.titles.index(title) script_index = self.titles.index(title)
script = self.scripts[script_index] script = self.selectable_scripts[script_index]
for i in range(script.args_from, script.args_to): for i in range(script.args_from, script.args_to):
inputs[i].visible = True inputs[i].visible = True
@ -164,7 +277,7 @@ class ScriptRunner:
if script_index == 0: if script_index == 0:
return None return None
script = self.scripts[script_index-1] script = self.selectable_scripts[script_index-1]
if script is None: if script is None:
return None return None
@ -176,7 +289,16 @@ class ScriptRunner:
return processed return processed
def reload_sources(self): def run_alwayson_scripts(self, p):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.process(p, *script_args)
except Exception:
print(f"Error running alwayson script: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)): for si, script in list(enumerate(self.scripts)):
with open(script.filename, "r", encoding="utf8") as file: with open(script.filename, "r", encoding="utf8") as file:
args_from = script.args_from args_from = script.args_from
@ -186,9 +308,12 @@ class ScriptRunner:
from types import ModuleType from types import ModuleType
module = cache.get(filename, None)
if module is None:
compiled = compile(text, filename, 'exec') compiled = compile(text, filename, 'exec')
module = ModuleType(script.filename) module = ModuleType(script.filename)
exec(compiled, module.__dict__) exec(compiled, module.__dict__)
cache[filename] = module
for key, script_class in module.__dict__.items(): for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script): if type(script_class) == type and issubclass(script_class, Script):
@ -197,19 +322,22 @@ class ScriptRunner:
self.scripts[si].args_from = args_from self.scripts[si].args_from = args_from
self.scripts[si].args_to = args_to self.scripts[si].args_to = args_to
scripts_txt2img = ScriptRunner() scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner() scripts_img2img = ScriptRunner()
def reload_script_body_only(): def reload_script_body_only():
scripts_txt2img.reload_sources() cache = {}
scripts_img2img.reload_sources() scripts_txt2img.reload_sources(cache)
scripts_img2img.reload_sources(cache)
def reload_scripts(basedir): def reload_scripts():
global scripts_txt2img, scripts_img2img global scripts_txt2img, scripts_img2img
scripts_data.clear() load_scripts()
load_scripts(basedir)
scripts_txt2img = ScriptRunner() scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner() scripts_img2img = ScriptRunner()

View file

@ -19,6 +19,7 @@ attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
def apply_optimizations(): def apply_optimizations():
undo_optimizations() undo_optimizations()
@ -223,7 +224,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def process_text_old(self, text): def process_text_old(self, text):
id_start = self.wrapped.tokenizer.bos_token_id id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id id_end = self.wrapped.tokenizer.eos_token_id
@ -280,7 +280,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
token_count = len(remade_tokens) token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end] remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
cache[tuple_tokens] = (remade_tokens, fixes, multipliers) cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers)) multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
@ -340,7 +340,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
return z return z
def process_tokens(self, remade_batch_tokens, batch_multipliers): def process_tokens(self, remade_batch_tokens, batch_multipliers):
if not opts.use_old_emphasis_implementation: if not opts.use_old_emphasis_implementation:
remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens] remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
@ -385,8 +384,8 @@ class EmbeddingsWithFixes(torch.nn.Module):
for fixes, tensor in zip(batch_fixes, inputs_embeds): for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes: for offset, embedding in fixes:
emb = embedding.vec emb = embedding.vec
emb_len = min(tensor.shape[0]-offset-1, emb.shape[0]) emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset+1], emb[0:emb_len], tensor[offset+1+emb_len:]]) tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
vecs.append(tensor) vecs.append(tensor)

View file

@ -0,0 +1,331 @@
import torch
from einops import repeat
from omegaconf import ListConfig
import ldm.models.diffusion.ddpm
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
# =================================================================================================
# Monkey patch DDIMSampler methods from RunwayML repo directly.
# Adapted from:
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
# =================================================================================================
@torch.no_grad()
def sample_ddim(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
if conditioning is not None:
if isinstance(conditioning, dict):
ctmp = conditioning[list(conditioning.keys())[0]]
while isinstance(ctmp, list):
ctmp = ctmp[0]
cbs = ctmp.shape[0]
if cbs != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
else:
if conditioning.shape[0] != batch_size:
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
samples, intermediates = self.ddim_sampling(conditioning, size,
callback=callback,
img_callback=img_callback,
quantize_denoised=quantize_x0,
mask=mask, x0=x0,
ddim_use_original_steps=False,
noise_dropout=noise_dropout,
temperature=temperature,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
x_T=x_T,
log_every_t=log_every_t,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
)
return samples, intermediates
@torch.no_grad()
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None):
b, *_, device = *x.shape, x.device
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
e_t = self.model.apply_model(x, t, c)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2)
if isinstance(c, dict):
assert isinstance(unconditional_conditioning, dict)
c_in = dict()
for k in c:
if isinstance(c[k], list):
c_in[k] = [
torch.cat([unconditional_conditioning[k][i], c[k][i]])
for i in range(len(c[k]))
]
else:
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
else:
c_in = torch.cat([unconditional_conditioning, c])
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
if score_corrector is not None:
assert self.model.parameterization == "eps"
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
if quantize_denoised:
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
# =================================================================================================
# Monkey patch PLMSSampler methods.
# This one was not actually patched correctly in the RunwayML repo, but we can replicate the changes.
# Adapted from:
# https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py
# =================================================================================================
@torch.no_grad()
def sample_plms(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
if conditioning is not None:
if isinstance(conditioning, dict):
ctmp = conditioning[list(conditioning.keys())[0]]
while isinstance(ctmp, list):
ctmp = ctmp[0]
cbs = ctmp.shape[0]
if cbs != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
else:
if conditioning.shape[0] != batch_size:
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
print(f'Data shape for PLMS sampling is {size}')
samples, intermediates = self.plms_sampling(conditioning, size,
callback=callback,
img_callback=img_callback,
quantize_denoised=quantize_x0,
mask=mask, x0=x0,
ddim_use_original_steps=False,
noise_dropout=noise_dropout,
temperature=temperature,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
x_T=x_T,
log_every_t=log_every_t,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
)
return samples, intermediates
@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
b, *_, device = *x.shape, x.device
def get_model_output(x, t):
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
e_t = self.model.apply_model(x, t, c)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2)
if isinstance(c, dict):
assert isinstance(unconditional_conditioning, dict)
c_in = dict()
for k in c:
if isinstance(c[k], list):
c_in[k] = [
torch.cat([unconditional_conditioning[k][i], c[k][i]])
for i in range(len(c[k]))
]
else:
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
else:
c_in = torch.cat([unconditional_conditioning, c])
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
if score_corrector is not None:
assert self.model.parameterization == "eps"
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
return e_t
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
def get_x_prev_and_pred_x0(e_t, index):
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
if quantize_denoised:
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
e_t = get_model_output(x, t)
if len(old_eps) == 0:
# Pseudo Improved Euler (2nd order)
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
e_t_next = get_model_output(x_prev, t_next)
e_t_prime = (e_t + e_t_next) / 2
elif len(old_eps) == 1:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (3 * e_t - old_eps[-1]) / 2
elif len(old_eps) == 2:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
elif len(old_eps) >= 3:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
return x_prev, pred_x0, e_t
# =================================================================================================
# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
# Adapted from:
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddpm.py
# =================================================================================================
@torch.no_grad()
def get_unconditional_conditioning(self, batch_size, null_label=None):
if null_label is not None:
xc = null_label
if isinstance(xc, ListConfig):
xc = list(xc)
if isinstance(xc, dict) or isinstance(xc, list):
c = self.get_learned_conditioning(xc)
else:
if hasattr(xc, "to"):
xc = xc.to(self.device)
c = self.get_learned_conditioning(xc)
else:
# todo: get null label from cond_stage_model
raise NotImplementedError()
c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
return c
class LatentInpaintDiffusion(LatentDiffusion):
def __init__(
self,
concat_keys=("mask", "masked_image"),
masked_image_key="masked_image",
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.masked_image_key = masked_image_key
assert self.masked_image_key in concat_keys
self.concat_keys = concat_keys
def should_hijack_inpainting(checkpoint_info):
return str(checkpoint_info.filename).endswith("inpainting.ckpt") and not checkpoint_info.config.endswith("inpainting.yaml")
def do_inpainting_hijack():
ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms

View file

@ -7,8 +7,9 @@ from omegaconf import OmegaConf
from ldm.util import instantiate_from_config from ldm.util import instantiate_from_config
from modules import shared, modelloader, devices from modules import shared, modelloader, devices, script_callbacks
from modules.paths import models_path from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
model_dir = "Stable-diffusion" model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir)) model_path = os.path.abspath(os.path.join(models_path, model_dir))
@ -20,7 +21,7 @@ checkpoints_loaded = collections.OrderedDict()
try: try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
from transformers import logging from transformers import logging, CLIPModel
logging.set_verbosity_error() logging.set_verbosity_error()
except Exception: except Exception:
@ -154,6 +155,9 @@ def get_state_dict_from_checkpoint(pl_sd):
return pl_sd return pl_sd
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
def load_model_weights(model, checkpoint_info): def load_model_weights(model, checkpoint_info):
checkpoint_file = checkpoint_info.filename checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash sd_model_hash = checkpoint_info.hash
@ -185,7 +189,7 @@ def load_model_weights(model, checkpoint_info):
if os.path.exists(vae_file): if os.path.exists(vae_file):
print(f"Loading VAE weights from: {vae_file}") print(f"Loading VAE weights from: {vae_file}")
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"} vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
model.first_stage_model.load_state_dict(vae_dict) model.first_stage_model.load_state_dict(vae_dict)
model.first_stage_model.to(devices.dtype_vae) model.first_stage_model.to(devices.dtype_vae)
@ -203,14 +207,26 @@ def load_model_weights(model, checkpoint_info):
model.sd_checkpoint_info = checkpoint_info model.sd_checkpoint_info = checkpoint_info
def load_model(): def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack from modules import lowvram, sd_hijack
checkpoint_info = select_checkpoint() checkpoint_info = checkpoint_info or select_checkpoint()
if checkpoint_info.config != shared.cmd_opts.config: if checkpoint_info.config != shared.cmd_opts.config:
print(f"Loading config from: {checkpoint_info.config}") print(f"Loading config from: {checkpoint_info.config}")
sd_config = OmegaConf.load(checkpoint_info.config) sd_config = OmegaConf.load(checkpoint_info.config)
if should_hijack_inpainting(checkpoint_info):
# Hardcoded config for now...
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
sd_config.model.params.use_ema = False
sd_config.model.params.conditioning_key = "hybrid"
sd_config.model.params.unet_config.params.in_channels = 9
# Create a "fake" config with a different name so that we know to unload it when switching models.
checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
do_inpainting_hijack()
sd_model = instantiate_from_config(sd_config.model) sd_model = instantiate_from_config(sd_config.model)
load_model_weights(sd_model, checkpoint_info) load_model_weights(sd_model, checkpoint_info)
@ -222,6 +238,9 @@ def load_model():
sd_hijack.model_hijack.hijack(sd_model) sd_hijack.model_hijack.hijack(sd_model)
sd_model.eval() sd_model.eval()
shared.sd_model = sd_model
script_callbacks.model_loaded_callback(sd_model)
print(f"Model loaded.") print(f"Model loaded.")
return sd_model return sd_model
@ -234,9 +253,9 @@ def reload_model_weights(sd_model, info=None):
if sd_model.sd_model_checkpoint == checkpoint_info.filename: if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return return
if sd_model.sd_checkpoint_info.config != checkpoint_info.config: if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
checkpoints_loaded.clear() checkpoints_loaded.clear()
shared.sd_model = load_model() load_model(checkpoint_info)
return shared.sd_model return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
@ -249,6 +268,7 @@ def reload_model_weights(sd_model, info=None):
load_model_weights(sd_model, checkpoint_info) load_model_weights(sd_model, checkpoint_info)
sd_hijack.model_hijack.hijack(sd_model) sd_hijack.model_hijack.hijack(sd_model)
script_callbacks.model_loaded_callback(sd_model)
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device) sd_model.to(devices.device)

View file

@ -7,7 +7,7 @@ import inspect
import k_diffusion.sampling import k_diffusion.sampling
import ldm.models.diffusion.ddim import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms import ldm.models.diffusion.plms
from modules import prompt_parser, devices, processing from modules import prompt_parser, devices, processing, images
from modules.shared import opts, cmd_opts, state from modules.shared import opts, cmd_opts, state
import modules.shared as shared import modules.shared as shared
@ -71,6 +71,7 @@ sampler_extra_params = {
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
} }
def setup_img2img_steps(p, steps=None): def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None: if opts.img2img_fix_steps or steps is not None:
steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
@ -82,14 +83,22 @@ def setup_img2img_steps(p, steps=None):
return steps, t_enc return steps, t_enc
def sample_to_image(samples): def single_sample_to_image(sample):
x_sample = processing.decode_first_stage(shared.sd_model, samples[0:1])[0] x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8) x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample) return Image.fromarray(x_sample)
def sample_to_image(samples):
return single_sample_to_image(samples[0])
def samples_to_image_grid(samples):
return images.image_grid([single_sample_to_image(sample) for sample in samples])
def store_latent(decoded): def store_latent(decoded):
state.current_latent = decoded state.current_latent = decoded
@ -117,6 +126,8 @@ class VanillaStableDiffusionSampler:
self.config = None self.config = None
self.last_latent = None self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def number_of_needed_noises(self, p): def number_of_needed_noises(self, p):
return 0 return 0
@ -136,6 +147,12 @@ class VanillaStableDiffusionSampler:
if self.stop_at is not None and self.step > self.stop_at: if self.stop_at is not None and self.step > self.stop_at:
raise InterruptedException raise InterruptedException
# Have to unwrap the inpainting conditioning here to perform pre-processing
image_conditioning = None
if isinstance(cond, dict):
image_conditioning = cond["c_concat"][0]
cond = cond["c_crossattn"][0]
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
@ -157,6 +174,12 @@ class VanillaStableDiffusionSampler:
img_orig = self.sampler.model.q_sample(self.init_latent, ts) img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec x_dec = img_orig * self.mask + self.nmask * x_dec
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
if image_conditioning is not None:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
if self.mask is not None: if self.mask is not None:
@ -182,7 +205,7 @@ class VanillaStableDiffusionSampler:
self.mask = p.mask if hasattr(p, 'mask') else None self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None self.nmask = p.nmask if hasattr(p, 'nmask') else None
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None): def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps) steps, t_enc = setup_img2img_steps(p, steps)
self.initialize(p) self.initialize(p)
@ -196,20 +219,33 @@ class VanillaStableDiffusionSampler:
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.init_latent = x self.init_latent = x
self.last_latent = x
self.step = 0 self.step = 0
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)) samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None): def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
self.initialize(p) self.initialize(p)
self.init_latent = None self.init_latent = None
self.last_latent = x
self.step = 0 self.step = 0
steps = steps or p.steps steps = steps or p.steps
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
# existing code fails with certain step counts, like 9 # existing code fails with certain step counts, like 9
try: try:
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
@ -228,7 +264,7 @@ class CFGDenoiser(torch.nn.Module):
self.init_latent = None self.init_latent = None
self.step = 0 self.step = 0
def forward(self, x, sigma, uncond, cond, cond_scale): def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
if state.interrupted or state.skipped: if state.interrupted or state.skipped:
raise InterruptedException raise InterruptedException
@ -239,28 +275,29 @@ class CFGDenoiser(torch.nn.Module):
repeats = [len(conds_list[i]) for i in range(batch_size)] repeats = [len(conds_list[i]) for i in range(batch_size)]
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
if tensor.shape[1] == uncond.shape[1]: if tensor.shape[1] == uncond.shape[1]:
cond_in = torch.cat([tensor, uncond]) cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond: if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond=cond_in) x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
else: else:
x_out = torch.zeros_like(x_in) x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size): for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset a = batch_offset
b = a + batch_size b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=cond_in[a:b]) x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
else: else:
x_out = torch.zeros_like(x_in) x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
for batch_offset in range(0, tensor.shape[0], batch_size): for batch_offset in range(0, tensor.shape[0], batch_size):
a = batch_offset a = batch_offset
b = min(a + batch_size, tensor.shape[0]) b = min(a + batch_size, tensor.shape[0])
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=tensor[a:b]) x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=uncond) x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
denoised_uncond = x_out[-uncond.shape[0]:] denoised_uncond = x_out[-uncond.shape[0]:]
denoised = torch.clone(denoised_uncond) denoised = torch.clone(denoised_uncond)
@ -306,6 +343,8 @@ class KDiffusionSampler:
self.config = None self.config = None
self.last_latent = None self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def callback_state(self, d): def callback_state(self, d):
step = d['i'] step = d['i']
latent = d["denoised"] latent = d["denoised"]
@ -361,7 +400,7 @@ class KDiffusionSampler:
return extra_params_kwargs return extra_params_kwargs
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None): def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps) steps, t_enc = setup_img2img_steps(p, steps)
if p.sampler_noise_scheduler_override: if p.sampler_noise_scheduler_override:
@ -388,12 +427,18 @@ class KDiffusionSampler:
extra_params_kwargs['sigmas'] = sigma_sched extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x self.model_wrap_cfg.init_latent = x
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)) samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None): def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
steps = steps or p.steps steps = steps or p.steps
if p.sampler_noise_scheduler_override: if p.sampler_noise_scheduler_override:
@ -414,7 +459,13 @@ class KDiffusionSampler:
else: else:
extra_params_kwargs['sigmas'] = sigmas extra_params_kwargs['sigmas'] = sigmas
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)) self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples return samples

View file

@ -3,6 +3,7 @@ import datetime
import json import json
import os import os
import sys import sys
from collections import OrderedDict
import gradio as gr import gradio as gr
import tqdm import tqdm
@ -63,6 +64,7 @@ parser.add_argument("--port", type=int, help="launch gradio with given server po
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False) parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json')) parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json'))
parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False) parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False)
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json')) parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option") parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None) parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
@ -79,6 +81,8 @@ parser.add_argument("--disable-safe-unpickle", action='store_true', help="disabl
parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui") parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui")
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui") parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui")
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI") parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
parser.add_argument("--browse-all-images", action='store_true', help="Allow browsing all images by Image Browser", default=False)
cmd_opts = parser.parse_args() cmd_opts = parser.parse_args()
restricted_opts = [ restricted_opts = [
@ -163,13 +167,13 @@ def realesrgan_models_names():
class OptionInfo: class OptionInfo:
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, show_on_main_page=False, refresh=None): def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None):
self.default = default self.default = default
self.label = label self.label = label
self.component = component self.component = component
self.component_args = component_args self.component_args = component_args
self.onchange = onchange self.onchange = onchange
self.section = None self.section = section
self.refresh = refresh self.refresh = refresh
@ -250,7 +254,7 @@ options_templates.update(options_section(('system', "System"), {
})) }))
options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"), "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"), "dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"), "dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
@ -292,6 +296,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
options_templates.update(options_section(('ui', "User interface"), { options_templates.update(options_section(('ui', "User interface"), {
"show_progressbar": OptionInfo(True, "Show progressbar"), "show_progressbar": OptionInfo(True, "Show progressbar"),
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}), "show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
"return_grid": OptionInfo(True, "Show grid in results for web"), "return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
@ -323,6 +328,15 @@ options_templates.update(options_section(('inspiration', "Inspiration"), {
"inspiration_cols_num": OptionInfo(8, "Columns of inspiration interface frame", gr.Slider, {"minimum": 4, "maximum": 16, "step": 1}), "inspiration_cols_num": OptionInfo(8, "Columns of inspiration interface frame", gr.Slider, {"minimum": 4, "maximum": 16, "step": 1}),
})) }))
options_templates.update(options_section(('images-history', "Images Browser"), {
#"images_history_reconstruct_directory": OptionInfo(False, "Reconstruct output directory structure.This can greatly improve the speed of loading , but will change the original output directory structure"),
"images_history_preload": OptionInfo(False, "Preload images at startup"),
"images_history_num_per_page": OptionInfo(36, "Number of pictures displayed on each page"),
"images_history_pages_num": OptionInfo(6, "Minimum number of pages per load "),
"images_history_grid_num": OptionInfo(6, "Number of grids in each row"),
}))
class Options: class Options:
data = None data = None
data_labels = options_templates data_labels = options_templates
@ -385,6 +399,20 @@ class Options:
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()} d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
return json.dumps(d) return json.dumps(d)
def add_option(self, key, info):
self.data_labels[key] = info
def reorder(self):
"""reorder settings so that all items related to section always go together"""
section_ids = {}
settings_items = self.data_labels.items()
for k, item in settings_items:
if item.section not in section_ids:
section_ids[item.section] = len(section_ids)
self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])}
opts = Options() opts = Options()
if os.path.exists(config_filename): if os.path.exists(config_filename):
@ -394,6 +422,8 @@ sd_upscalers = []
sd_model = None sd_model = None
clip_model = None
progress_print_out = sys.stdout progress_print_out = sys.stdout

View file

@ -83,7 +83,7 @@ class PersonalizedBase(Dataset):
self.dataset.append(entry) self.dataset.append(entry)
assert len(self.dataset) > 1, "No images have been found in the dataset." assert len(self.dataset) > 0, "No images have been found in the dataset."
self.length = len(self.dataset) * repeats // batch_size self.length = len(self.dataset) * repeats // batch_size
self.initial_indexes = np.arange(len(self.dataset)) self.initial_indexes = np.arange(len(self.dataset))
@ -91,7 +91,7 @@ class PersonalizedBase(Dataset):
self.shuffle() self.shuffle()
def shuffle(self): def shuffle(self):
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])] self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0]).numpy()]
def create_text(self, filename_text): def create_text(self, filename_text):
text = random.choice(self.lines) text = random.choice(self.lines)

View file

@ -5,6 +5,7 @@ import zlib
from PIL import Image, PngImagePlugin, ImageDraw, ImageFont from PIL import Image, PngImagePlugin, ImageDraw, ImageFont
from fonts.ttf import Roboto from fonts.ttf import Roboto
import torch import torch
from modules.shared import opts
class EmbeddingEncoder(json.JSONEncoder): class EmbeddingEncoder(json.JSONEncoder):
@ -133,7 +134,7 @@ def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, t
from math import cos from math import cos
image = srcimage.copy() image = srcimage.copy()
fontsize = 32
if textfont is None: if textfont is None:
try: try:
textfont = ImageFont.truetype(opts.font or Roboto, fontsize) textfont = ImageFont.truetype(opts.font or Roboto, fontsize)
@ -150,7 +151,7 @@ def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, t
image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size)) image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size))
draw = ImageDraw.Draw(image) draw = ImageDraw.Draw(image)
fontsize = 32
font = ImageFont.truetype(textfont, fontsize) font = ImageFont.truetype(textfont, fontsize)
padding = 10 padding = 10

View file

@ -1,5 +1,6 @@
import os import os
from PIL import Image, ImageOps from PIL import Image, ImageOps
import math
import platform import platform
import sys import sys
import tqdm import tqdm
@ -11,7 +12,7 @@ if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru import modules.deepbooru as deepbooru
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False): def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2):
try: try:
if process_caption: if process_caption:
shared.interrogator.load() shared.interrogator.load()
@ -21,7 +22,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts) deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru) preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio)
finally: finally:
@ -33,11 +34,13 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False): def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2):
width = process_width width = process_width
height = process_height height = process_height
src = os.path.abspath(process_src) src = os.path.abspath(process_src)
dst = os.path.abspath(process_dst) dst = os.path.abspath(process_dst)
split_threshold = max(0.0, min(1.0, split_threshold))
overlap_ratio = max(0.0, min(0.9, overlap_ratio))
assert src != dst, 'same directory specified as source and destination' assert src != dst, 'same directory specified as source and destination'
@ -48,7 +51,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
shared.state.textinfo = "Preprocessing..." shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files) shared.state.job_count = len(files)
def save_pic_with_caption(image, index): def save_pic_with_caption(image, index, existing_caption=None):
caption = "" caption = ""
if process_caption: if process_caption:
@ -66,17 +69,49 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
basename = f"{index:05}-{subindex[0]}-{filename_part}" basename = f"{index:05}-{subindex[0]}-{filename_part}"
image.save(os.path.join(dst, f"{basename}.png")) image.save(os.path.join(dst, f"{basename}.png"))
if preprocess_txt_action == 'prepend' and existing_caption:
caption = existing_caption + ' ' + caption
elif preprocess_txt_action == 'append' and existing_caption:
caption = caption + ' ' + existing_caption
elif preprocess_txt_action == 'copy' and existing_caption:
caption = existing_caption
caption = caption.strip()
if len(caption) > 0: if len(caption) > 0:
with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file: with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file:
file.write(caption) file.write(caption)
subindex[0] += 1 subindex[0] += 1
def save_pic(image, index): def save_pic(image, index, existing_caption=None):
save_pic_with_caption(image, index) save_pic_with_caption(image, index, existing_caption=existing_caption)
if process_flip: if process_flip:
save_pic_with_caption(ImageOps.mirror(image), index) save_pic_with_caption(ImageOps.mirror(image), index, existing_caption=existing_caption)
def split_pic(image, inverse_xy):
if inverse_xy:
from_w, from_h = image.height, image.width
to_w, to_h = height, width
else:
from_w, from_h = image.width, image.height
to_w, to_h = width, height
h = from_h * to_w // from_w
if inverse_xy:
image = image.resize((h, to_w))
else:
image = image.resize((to_w, h))
split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio)))
y_step = (h - to_h) / (split_count - 1)
for i in range(split_count):
y = int(y_step * i)
if inverse_xy:
splitted = image.crop((y, 0, y + to_h, to_w))
else:
splitted = image.crop((0, y, to_w, y + to_h))
yield splitted
for index, imagefile in enumerate(tqdm.tqdm(files)): for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0] subindex = [0]
@ -86,31 +121,27 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
except Exception: except Exception:
continue continue
existing_caption = None
existing_caption_filename = os.path.splitext(filename)[0] + '.txt'
if os.path.exists(existing_caption_filename):
with open(existing_caption_filename, 'r', encoding="utf8") as file:
existing_caption = file.read()
if shared.state.interrupted: if shared.state.interrupted:
break break
ratio = img.height / img.width if img.height > img.width:
is_tall = ratio > 1.35 ratio = (img.width * height) / (img.height * width)
is_wide = ratio < 1 / 1.35 inverse_xy = False
else:
ratio = (img.height * width) / (img.width * height)
inverse_xy = True
if process_split and is_tall: if process_split and ratio < 1.0 and ratio <= split_threshold:
img = img.resize((width, height * img.height // img.width)) for splitted in split_pic(img, inverse_xy):
save_pic(splitted, index, existing_caption=existing_caption)
top = img.crop((0, 0, width, height))
save_pic(top, index)
bot = img.crop((0, img.height - height, width, img.height))
save_pic(bot, index)
elif process_split and is_wide:
img = img.resize((width * img.width // img.height, height))
left = img.crop((0, 0, width, height))
save_pic(left, index)
right = img.crop((img.width - width, 0, img.width, height))
save_pic(right, index)
else: else:
img = images.resize_image(1, img, width, height) img = images.resize_image(1, img, width, height)
save_pic(img, index) save_pic(img, index, existing_caption=existing_caption)
shared.state.nextjob() shared.state.nextjob()

View file

@ -153,7 +153,7 @@ class EmbeddingDatabase:
return None, None return None, None
def create_embedding(name, num_vectors_per_token, init_text='*'): def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
cond_model = shared.sd_model.cond_stage_model cond_model = shared.sd_model.cond_stage_model
embedding_layer = cond_model.wrapped.transformer.text_model.embeddings embedding_layer = cond_model.wrapped.transformer.text_model.embeddings
@ -165,6 +165,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token] vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt") fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists" assert not os.path.exists(fn), f"file {fn} already exists"
embedding = Embedding(vec, name) embedding = Embedding(vec, name)
@ -275,6 +276,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
loss.backward() loss.backward()
optimizer.step() optimizer.step()
epoch_num = embedding.step // len(ds) epoch_num = embedding.step // len(ds)
epoch_step = embedding.step - (epoch_num * len(ds)) + 1 epoch_step = embedding.step - (epoch_num * len(ds)) + 1

View file

@ -7,8 +7,8 @@ import modules.textual_inversion.preprocess
from modules import sd_hijack, shared from modules import sd_hijack, shared
def create_embedding(name, initialization_text, nvpt): def create_embedding(name, initialization_text, nvpt, overwrite_old):
filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, init_text=initialization_text) filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, overwrite_old, init_text=initialization_text)
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()

View file

@ -1,5 +1,6 @@
import modules.scripts import modules.scripts
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts from modules.shared import opts, cmd_opts
import modules.shared as shared import modules.shared as shared
import modules.processing as processing import modules.processing as processing
@ -35,6 +36,9 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
firstphase_height=firstphase_height if enable_hr else None, firstphase_height=firstphase_height if enable_hr else None,
) )
p.scripts = modules.scripts.scripts_txt2img
p.script_args = args
if cmd_opts.enable_console_prompts: if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out) print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
@ -53,4 +57,3 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
processed.images = [] processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info) return processed.images, generation_info_js, plaintext_to_html(processed.info)

View file

@ -5,45 +5,55 @@ import json
import math import math
import mimetypes import mimetypes
import os import os
import platform
import random import random
import subprocess as sp
import sys import sys
import tempfile import tempfile
import time import time
import traceback import traceback
import platform
import subprocess as sp
from functools import partial, reduce from functools import partial, reduce
import gradio as gr
import gradio.routes
import gradio.utils
import numpy as np import numpy as np
import piexif
import torch import torch
from PIL import Image, PngImagePlugin from PIL import Image, PngImagePlugin
import piexif
import gradio as gr import gradio as gr
import gradio.utils import gradio.utils
import gradio.routes import gradio.routes
from modules import sd_hijack, sd_models, localization from modules import sd_hijack, sd_models, localization, script_callbacks
from modules.paths import script_path from modules.paths import script_path
from modules.shared import opts, cmd_opts, restricted_opts from modules.shared import opts, cmd_opts, restricted_opts
if cmd_opts.deepdanbooru: if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags from modules.deepbooru import get_deepbooru_tags
import modules.shared as shared
from modules.sd_samplers import samplers, samplers_for_img2img import modules.codeformer_model
from modules.sd_hijack import model_hijack import modules.generation_parameters_copypaste
import modules.gfpgan_model
import modules.hypernetworks.ui
import modules.ldsr_model import modules.ldsr_model
import modules.scripts import modules.scripts
import modules.gfpgan_model import modules.shared as shared
import modules.codeformer_model
import modules.styles import modules.styles
import modules.generation_parameters_copypaste import modules.textual_inversion.ui
from modules import prompt_parser from modules import prompt_parser
from modules.images import save_image from modules.images import save_image
from modules.sd_hijack import model_hijack
from modules.sd_samplers import samplers, samplers_for_img2img
import modules.textual_inversion.ui import modules.textual_inversion.ui
import modules.hypernetworks.ui import modules.hypernetworks.ui
import modules.images_history as images_history import modules.images_history as images_history
import modules.inspiration as inspiration import modules.inspiration as inspiration
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init() mimetypes.init()
mimetypes.add_type('application/javascript', '.js') mimetypes.add_type('application/javascript', '.js')
@ -308,6 +318,9 @@ def check_progress_call(id_part):
if shared.parallel_processing_allowed: if shared.parallel_processing_allowed:
if shared.state.sampling_step - shared.state.current_image_sampling_step >= opts.show_progress_every_n_steps and shared.state.current_latent is not None: if shared.state.sampling_step - shared.state.current_image_sampling_step >= opts.show_progress_every_n_steps and shared.state.current_latent is not None:
if opts.show_progress_grid:
shared.state.current_image = modules.sd_samplers.samples_to_image_grid(shared.state.current_latent)
else:
shared.state.current_image = modules.sd_samplers.sample_to_image(shared.state.current_latent) shared.state.current_image = modules.sd_samplers.sample_to_image(shared.state.current_latent)
shared.state.current_image_sampling_step = shared.state.sampling_step shared.state.current_image_sampling_step = shared.state.sampling_step
@ -567,6 +580,9 @@ def apply_setting(key, value):
if value is None: if value is None:
return gr.update() return gr.update()
if shared.cmd_opts.freeze_settings:
return gr.update()
# dont allow model to be swapped when model hash exists in prompt # dont allow model to be swapped when model hash exists in prompt
if key == "sd_model_checkpoint" and opts.disable_weights_auto_swap: if key == "sd_model_checkpoint" and opts.disable_weights_auto_swap:
return gr.update() return gr.update()
@ -593,11 +609,7 @@ def apply_setting(key, value):
return value return value
def create_ui(wrap_gradio_gpu_call): def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
import modules.img2img
import modules.txt2img
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh(): def refresh():
refresh_method() refresh_method()
args = refreshed_args() if callable(refreshed_args) else refreshed_args args = refreshed_args() if callable(refreshed_args) else refreshed_args
@ -609,12 +621,18 @@ def create_ui(wrap_gradio_gpu_call):
refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id) refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id)
refresh_button.click( refresh_button.click(
fn = refresh, fn=refresh,
inputs = [], inputs=[],
outputs = [refresh_component] outputs=[refresh_component]
) )
return refresh_button return refresh_button
def create_ui(wrap_gradio_gpu_call):
import modules.img2img
import modules.txt2img
with gr.Blocks(analytics_enabled=False) as txt2img_interface: with gr.Blocks(analytics_enabled=False) as txt2img_interface:
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False) txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
dummy_component = gr.Label(visible=False) dummy_component = gr.Label(visible=False)
@ -711,6 +729,7 @@ def create_ui(wrap_gradio_gpu_call):
firstphase_width, firstphase_width,
firstphase_height, firstphase_height,
] + custom_inputs, ] + custom_inputs,
outputs=[ outputs=[
txt2img_gallery, txt2img_gallery,
generation_info, generation_info,
@ -787,6 +806,7 @@ def create_ui(wrap_gradio_gpu_call):
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
(firstphase_width, "First pass size-1"), (firstphase_width, "First pass size-1"),
(firstphase_height, "First pass size-2"), (firstphase_height, "First pass size-2"),
*modules.scripts.scripts_txt2img.infotext_fields
] ]
txt2img_preview_params = [ txt2img_preview_params = [
@ -854,8 +874,8 @@ def create_ui(wrap_gradio_gpu_call):
sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index") sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index")
with gr.Group(): with gr.Group():
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512, elem_id="img2img_width")
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512, elem_id="img2img_height")
with gr.Row(): with gr.Row():
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
@ -1052,6 +1072,7 @@ def create_ui(wrap_gradio_gpu_call):
(seed_resize_from_w, "Seed resize from-1"), (seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"), (seed_resize_from_h, "Seed resize from-2"),
(denoising_strength, "Denoising strength"), (denoising_strength, "Denoising strength"),
*modules.scripts.scripts_img2img.infotext_fields
] ]
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter]) token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
@ -1174,12 +1195,12 @@ def create_ui(wrap_gradio_gpu_call):
) )
#images history #images history
images_history_switch_dict = { images_history_switch_dict = {
"fn":modules.generation_parameters_copypaste.connect_paste, "fn": modules.generation_parameters_copypaste.connect_paste,
"t2i":txt2img_paste_fields, "t2i": txt2img_paste_fields,
"i2i":img2img_paste_fields "i2i": img2img_paste_fields
} }
browser_interface = images_history.create_history_tabs(gr, opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict) browser_interface = images_history.create_history_tabs(gr, opts, cmd_opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict)
inspiration_interface = inspiration.ui(gr, opts, txt2img_prompt, img2img_prompt) inspiration_interface = inspiration.ui(gr, opts, txt2img_prompt, img2img_prompt)
with gr.Blocks() as modelmerger_interface: with gr.Blocks() as modelmerger_interface:
@ -1213,6 +1234,7 @@ def create_ui(wrap_gradio_gpu_call):
new_embedding_name = gr.Textbox(label="Name") new_embedding_name = gr.Textbox(label="Name")
initialization_text = gr.Textbox(label="Initialization text", value="*") initialization_text = gr.Textbox(label="Initialization text", value="*")
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1) nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1)
overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding")
with gr.Row(): with gr.Row():
with gr.Column(scale=3): with gr.Column(scale=3):
@ -1225,7 +1247,10 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_name = gr.Textbox(label="Name") new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"]) new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'") new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu", "elu", "swish"])
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization") new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout")
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork")
with gr.Row(): with gr.Row():
with gr.Column(scale=3): with gr.Column(scale=3):
@ -1239,13 +1264,18 @@ def create_ui(wrap_gradio_gpu_call):
process_dst = gr.Textbox(label='Destination directory') process_dst = gr.Textbox(label='Destination directory')
process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"])
with gr.Row(): with gr.Row():
process_flip = gr.Checkbox(label='Create flipped copies') process_flip = gr.Checkbox(label='Create flipped copies')
process_split = gr.Checkbox(label='Split oversized images into two') process_split = gr.Checkbox(label='Split oversized images')
process_caption = gr.Checkbox(label='Use BLIP for caption') process_caption = gr.Checkbox(label='Use BLIP for caption')
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False) process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False)
with gr.Row(visible=False) as process_split_extra_row:
process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05)
process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05)
with gr.Row(): with gr.Row():
with gr.Column(scale=3): with gr.Column(scale=3):
gr.HTML(value="") gr.HTML(value="")
@ -1253,15 +1283,24 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column(): with gr.Column():
run_preprocess = gr.Button(value="Preprocess", variant='primary') run_preprocess = gr.Button(value="Preprocess", variant='primary')
process_split.change(
fn=lambda show: gr_show(show),
inputs=[process_split],
outputs=[process_split_extra_row],
)
with gr.Tab(label="Train"): with gr.Tab(label="Train"):
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>") gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>")
with gr.Row(): with gr.Row():
train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name") create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name")
with gr.Row(): with gr.Row():
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()]) train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()])
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name") create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name")
learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005") with gr.Row():
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005")
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001")
batch_size = gr.Number(label='Batch size', value=1, precision=0) batch_size = gr.Number(label='Batch size', value=1, precision=0)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
@ -1295,6 +1334,7 @@ def create_ui(wrap_gradio_gpu_call):
new_embedding_name, new_embedding_name,
initialization_text, initialization_text,
nvpt, nvpt,
overwrite_old_embedding,
], ],
outputs=[ outputs=[
train_embedding_name, train_embedding_name,
@ -1308,8 +1348,11 @@ def create_ui(wrap_gradio_gpu_call):
inputs=[ inputs=[
new_hypernetwork_name, new_hypernetwork_name,
new_hypernetwork_sizes, new_hypernetwork_sizes,
overwrite_old_hypernetwork,
new_hypernetwork_layer_structure, new_hypernetwork_layer_structure,
new_hypernetwork_activation_func,
new_hypernetwork_add_layer_norm, new_hypernetwork_add_layer_norm,
new_hypernetwork_use_dropout
], ],
outputs=[ outputs=[
train_hypernetwork_name, train_hypernetwork_name,
@ -1326,10 +1369,13 @@ def create_ui(wrap_gradio_gpu_call):
process_dst, process_dst,
process_width, process_width,
process_height, process_height,
preprocess_txt_action,
process_flip, process_flip,
process_split, process_split,
process_caption, process_caption,
process_caption_deepbooru process_caption_deepbooru,
process_split_threshold,
process_overlap_ratio,
], ],
outputs=[ outputs=[
ti_output, ti_output,
@ -1342,7 +1388,7 @@ def create_ui(wrap_gradio_gpu_call):
_js="start_training_textual_inversion", _js="start_training_textual_inversion",
inputs=[ inputs=[
train_embedding_name, train_embedding_name,
learn_rate, embedding_learn_rate,
batch_size, batch_size,
dataset_directory, dataset_directory,
log_directory, log_directory,
@ -1367,7 +1413,7 @@ def create_ui(wrap_gradio_gpu_call):
_js="start_training_textual_inversion", _js="start_training_textual_inversion",
inputs=[ inputs=[
train_hypernetwork_name, train_hypernetwork_name,
learn_rate, hypernetwork_learn_rate,
batch_size, batch_size,
dataset_directory, dataset_directory,
log_directory, log_directory,
@ -1431,6 +1477,9 @@ def create_ui(wrap_gradio_gpu_call):
components = [] components = []
component_dict = {} component_dict = {}
script_callbacks.ui_settings_callback()
opts.reorder()
def open_folder(f): def open_folder(f):
if not os.path.exists(f): if not os.path.exists(f):
print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.') print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
@ -1456,6 +1505,8 @@ Requested path was: {f}
def run_settings(*args): def run_settings(*args):
changed = 0 changed = 0
assert not shared.cmd_opts.freeze_settings, "changing settings is disabled"
for key, value, comp in zip(opts.data_labels.keys(), args, components): for key, value, comp in zip(opts.data_labels.keys(), args, components):
if comp != dummy_component and not opts.same_type(value, opts.data_labels[key].default): if comp != dummy_component and not opts.same_type(value, opts.data_labels[key].default):
return f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}", opts.dumpjson() return f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}", opts.dumpjson()
@ -1485,13 +1536,15 @@ Requested path was: {f}
return f'{changed} settings changed.', opts.dumpjson() return f'{changed} settings changed.', opts.dumpjson()
def run_settings_single(value, key): def run_settings_single(value, key):
assert not shared.cmd_opts.freeze_settings, "changing settings is disabled"
if not opts.same_type(value, opts.data_labels[key].default): if not opts.same_type(value, opts.data_labels[key].default):
return gr.update(visible=True), opts.dumpjson() return gr.update(visible=True), opts.dumpjson()
oldval = opts.data.get(key, None)
if cmd_opts.hide_ui_dir_config and key in restricted_opts: if cmd_opts.hide_ui_dir_config and key in restricted_opts:
return gr.update(value=oldval), opts.dumpjson() return gr.update(value=oldval), opts.dumpjson()
oldval = opts.data.get(key, None)
opts.data[key] = value opts.data[key] = value
if oldval != value: if oldval != value:
@ -1534,9 +1587,10 @@ Requested path was: {f}
previous_section = item.section previous_section = item.section
gr.HTML(elem_id="settings_header_text_{}".format(item.section[0]), value='<h1 class="gr-button-lg">{}</h1>'.format(item.section[1])) elem_id, text = item.section
gr.HTML(elem_id="settings_header_text_{}".format(elem_id), value='<h1 class="gr-button-lg">{}</h1>'.format(text))
if k in quicksettings_names: if k in quicksettings_names and not shared.cmd_opts.freeze_settings:
quicksettings_list.append((i, k, item)) quicksettings_list.append((i, k, item))
components.append(dummy_component) components.append(dummy_component)
else: else:
@ -1597,20 +1651,28 @@ Requested path was: {f}
(img2img_interface, "img2img", "img2img"), (img2img_interface, "img2img", "img2img"),
(extras_interface, "Extras", "extras"), (extras_interface, "Extras", "extras"),
(pnginfo_interface, "PNG Info", "pnginfo"), (pnginfo_interface, "PNG Info", "pnginfo"),
(browser_interface, "History", "images_history"),
(inspiration_interface, "Inspiration", "inspiration"), (inspiration_interface, "Inspiration", "inspiration"),
(browser_interface , "Image Browser", "images_history"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"), (modelmerger_interface, "Checkpoint Merger", "modelmerger"),
(train_interface, "Train", "ti"), (train_interface, "Train", "ti"),
(settings_interface, "Settings", "settings"),
] ]
with open(os.path.join(script_path, "style.css"), "r", encoding="utf8") as file: interfaces += script_callbacks.ui_tabs_callback()
css = file.read()
interfaces += [(settings_interface, "Settings", "settings")]
css = ""
for cssfile in modules.scripts.list_files_with_name("style.css"):
if not os.path.isfile(cssfile):
continue
with open(cssfile, "r", encoding="utf8") as file:
css += file.read() + "\n"
if os.path.exists(os.path.join(script_path, "user.css")): if os.path.exists(os.path.join(script_path, "user.css")):
with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file: with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file:
usercss = file.read() css += file.read() + "\n"
css += usercss
if not cmd_opts.no_progressbar_hiding: if not cmd_opts.no_progressbar_hiding:
css += css_hide_progressbar css += css_hide_progressbar
@ -1833,9 +1895,9 @@ def load_javascript(raw_response):
with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile: with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile:
javascript = f'<script>{jsfile.read()}</script>' javascript = f'<script>{jsfile.read()}</script>'
jsdir = os.path.join(script_path, "javascript") scripts_list = modules.scripts.list_scripts("javascript", ".js")
for filename in sorted(os.listdir(jsdir)): for basedir, filename, path in scripts_list:
with open(os.path.join(jsdir, filename), "r", encoding="utf8") as jsfile: with open(path, "r", encoding="utf8") as jsfile:
javascript += f"\n<!-- {filename} --><script>{jsfile.read()}</script>" javascript += f"\n<!-- {filename} --><script>{jsfile.read()}</script>"
if cmd_opts.theme is not None: if cmd_opts.theme is not None:
@ -1853,6 +1915,5 @@ def load_javascript(raw_response):
gradio.routes.templates.TemplateResponse = template_response gradio.routes.templates.TemplateResponse = template_response
reload_javascript = partial(load_javascript, reload_javascript = partial(load_javascript, gradio.routes.templates.TemplateResponse)
gradio.routes.templates.TemplateResponse)
reload_javascript() reload_javascript()

View file

@ -34,6 +34,9 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
sigma_in = torch.cat([sigmas[i] * s_in] * 2) sigma_in = torch.cat([sigmas[i] * s_in] * 2)
cond_in = torch.cat([uncond, cond]) cond_in = torch.cat([uncond, cond])
image_conditioning = torch.cat([p.image_conditioning] * 2)
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
t = dnw.sigma_to_t(sigma_in) t = dnw.sigma_to_t(sigma_in)
@ -78,6 +81,9 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2) sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
cond_in = torch.cat([uncond, cond]) cond_in = torch.cat([uncond, cond])
image_conditioning = torch.cat([p.image_conditioning] * 2)
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
if i == 1: if i == 1:
@ -194,7 +200,7 @@ class Script(scripts.Script):
p.seed = p.seed + 1 p.seed = p.seed + 1
return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning) return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)
p.sample = sample_extra p.sample = sample_extra

View file

@ -172,23 +172,22 @@ class Script(scripts.Script):
if down > 0: if down > 0:
down = target_h - init_img.height - up down = target_h - init_img.height - up
init_image = p.init_images[0] def expand(init, count, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
state.job_count = (1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0)
def expand(init, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
is_horiz = is_left or is_right is_horiz = is_left or is_right
is_vert = is_top or is_bottom is_vert = is_top or is_bottom
pixels_horiz = expand_pixels if is_horiz else 0 pixels_horiz = expand_pixels if is_horiz else 0
pixels_vert = expand_pixels if is_vert else 0 pixels_vert = expand_pixels if is_vert else 0
res_w = init.width + pixels_horiz images_to_process = []
res_h = init.height + pixels_vert output_images = []
for n in range(count):
res_w = init[n].width + pixels_horiz
res_h = init[n].height + pixels_vert
process_res_w = math.ceil(res_w / 64) * 64 process_res_w = math.ceil(res_w / 64) * 64
process_res_h = math.ceil(res_h / 64) * 64 process_res_h = math.ceil(res_h / 64) * 64
img = Image.new("RGB", (process_res_w, process_res_h)) img = Image.new("RGB", (process_res_w, process_res_h))
img.paste(init, (pixels_horiz if is_left else 0, pixels_vert if is_top else 0)) img.paste(init[n], (pixels_horiz if is_left else 0, pixels_vert if is_top else 0))
mask = Image.new("RGB", (process_res_w, process_res_h), "white") mask = Image.new("RGB", (process_res_w, process_res_h), "white")
draw = ImageDraw.Draw(mask) draw = ImageDraw.Draw(mask)
draw.rectangle(( draw.rectangle((
@ -201,26 +200,27 @@ class Script(scripts.Script):
np_image = (np.asarray(img) / 255.0).astype(np.float64) np_image = (np.asarray(img) / 255.0).astype(np.float64)
np_mask = (np.asarray(mask) / 255.0).astype(np.float64) np_mask = (np.asarray(mask) / 255.0).astype(np.float64)
noised = get_matched_noise(np_image, np_mask, noise_q, color_variation) noised = get_matched_noise(np_image, np_mask, noise_q, color_variation)
out = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB") output_images.append(Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB"))
target_width = min(process_width, init.width + pixels_horiz) if is_horiz else img.width
target_height = min(process_height, init.height + pixels_vert) if is_vert else img.height
crop_region = (
0 if is_left else out.width - target_width,
0 if is_top else out.height - target_height,
target_width if is_left else out.width,
target_height if is_top else out.height,
)
image_to_process = out.crop(crop_region)
mask = mask.crop(crop_region)
target_width = min(process_width, init[n].width + pixels_horiz) if is_horiz else img.width
target_height = min(process_height, init[n].height + pixels_vert) if is_vert else img.height
p.width = target_width if is_horiz else img.width p.width = target_width if is_horiz else img.width
p.height = target_height if is_vert else img.height p.height = target_height if is_vert else img.height
p.init_images = [image_to_process]
crop_region = (
0 if is_left else output_images[n].width - target_width,
0 if is_top else output_images[n].height - target_height,
target_width if is_left else output_images[n].width,
target_height if is_top else output_images[n].height,
)
mask = mask.crop(crop_region)
p.image_mask = mask p.image_mask = mask
image_to_process = output_images[n].crop(crop_region)
images_to_process.append(image_to_process)
p.init_images = images_to_process
latent_mask = Image.new("RGB", (p.width, p.height), "white") latent_mask = Image.new("RGB", (p.width, p.height), "white")
draw = ImageDraw.Draw(latent_mask) draw = ImageDraw.Draw(latent_mask)
draw.rectangle(( draw.rectangle((
@ -232,31 +232,52 @@ class Script(scripts.Script):
p.latent_mask = latent_mask p.latent_mask = latent_mask
proc = process_images(p) proc = process_images(p)
proc_img = proc.images[0]
if initial_seed_and_info[0] is None: if initial_seed_and_info[0] is None:
initial_seed_and_info[0] = proc.seed initial_seed_and_info[0] = proc.seed
initial_seed_and_info[1] = proc.info initial_seed_and_info[1] = proc.info
out.paste(proc_img, (0 if is_left else out.width - proc_img.width, 0 if is_top else out.height - proc_img.height)) for n in range(count):
out = out.crop((0, 0, res_w, res_h)) output_images[n].paste(proc.images[n], (0 if is_left else output_images[n].width - proc.images[n].width, 0 if is_top else output_images[n].height - proc.images[n].height))
return out output_images[n] = output_images[n].crop((0, 0, res_w, res_h))
img = init_image return output_images
batch_count = p.n_iter
batch_size = p.batch_size
p.n_iter = 1
state.job_count = batch_count * ((1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0))
all_processed_images = []
for i in range(batch_count):
imgs = [init_img] * batch_size
state.job = f"Batch {i + 1} out of {batch_count}"
if left > 0: if left > 0:
img = expand(img, left, is_left=True) imgs = expand(imgs, batch_size, left, is_left=True)
if right > 0: if right > 0:
img = expand(img, right, is_right=True) imgs = expand(imgs, batch_size, right, is_right=True)
if up > 0: if up > 0:
img = expand(img, up, is_top=True) imgs = expand(imgs, batch_size, up, is_top=True)
if down > 0: if down > 0:
img = expand(img, down, is_bottom=True) imgs = expand(imgs, batch_size, down, is_bottom=True)
res = Processed(p, [img], initial_seed_and_info[0], initial_seed_and_info[1]) all_processed_images += imgs
all_images = all_processed_images
combined_grid_image = images.image_grid(all_processed_images)
unwanted_grid_because_of_img_count = len(all_processed_images) < 2 and opts.grid_only_if_multiple
if opts.return_grid and not unwanted_grid_because_of_img_count:
all_images = [combined_grid_image] + all_processed_images
res = Processed(p, all_images, initial_seed_and_info[0], initial_seed_and_info[1])
if opts.samples_save: if opts.samples_save:
for img in all_processed_images:
images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p) images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
return res if opts.grid_save and not unwanted_grid_because_of_img_count:
images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
return res

View file

@ -89,6 +89,7 @@ def apply_checkpoint(p, x, xs):
if info is None: if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}") raise RuntimeError(f"Unknown checkpoint: {x}")
modules.sd_models.reload_model_weights(shared.sd_model, info) modules.sd_models.reload_model_weights(shared.sd_model, info)
p.sd_model = shared.sd_model
def confirm_checkpoints(p, xs): def confirm_checkpoints(p, xs):

View file

@ -71,8 +71,9 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs) return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
def initialize(): def initialize():
modules.scripts.load_scripts(os.path.join(script_path, "scripts")) modules.scripts.load_scripts()
if cmd_opts.ui_debug_mode: if cmd_opts.ui_debug_mode:
class enmpty(): class enmpty():
name = None name = None
@ -85,9 +86,7 @@ def initialize():
shared.face_restorers.append(modules.face_restoration.FaceRestoration()) shared.face_restorers.append(modules.face_restoration.FaceRestoration())
modelloader.load_upscalers() modelloader.load_upscalers()
modules.sd_models.load_model()
shared.sd_model = modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
@ -124,7 +123,8 @@ def api_only():
api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861) api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861)
def webui(launch_api=False): def webui():
launch_api = cmd_opts.api
initialize() initialize()
while 1: while 1:
@ -150,7 +150,7 @@ def webui(launch_api=False):
sd_samplers.set_samplers() sd_samplers.set_samplers()
print('Reloading Custom Scripts') print('Reloading Custom Scripts')
modules.scripts.reload_scripts(os.path.join(script_path, "scripts")) modules.scripts.reload_scripts()
print('Reloading modules: modules.ui') print('Reloading modules: modules.ui')
importlib.reload(modules.ui) importlib.reload(modules.ui)
print('Refreshing Model List') print('Refreshing Model List')
@ -164,4 +164,4 @@ if __name__ == "__main__":
if cmd_opts.nowebui: if cmd_opts.nowebui:
api_only() api_only()
else: else:
webui(cmd_opts.api) webui()