From 6f98e89486f55b0e4657e96ce640cf1c4675d187 Mon Sep 17 00:00:00 2001 From: discus0434 Date: Thu, 20 Oct 2022 00:10:45 +0000 Subject: [PATCH] update --- modules/hypernetworks/hypernetwork.py | 29 +++++++++++------ modules/hypernetworks/ui.py | 3 +- modules/ui.py | 45 ++++++++++++++------------- 3 files changed, 45 insertions(+), 32 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 74300122..7d617680 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -22,16 +22,20 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler class HypernetworkModule(torch.nn.Module): multiplier = 1.0 - def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False): + def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None): super().__init__() - assert layer_structure is not None, "layer_structure mut not be None" + assert layer_structure is not None, "layer_structure must not be None" assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" linears = [] for i in range(len(layer_structure) - 1): linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) + if activation_func == "relu": + linears.append(torch.nn.ReLU()) + if activation_func == "leakyrelu": + linears.append(torch.nn.LeakyReLU()) if add_layer_norm: linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) @@ -42,8 +46,9 @@ class HypernetworkModule(torch.nn.Module): self.load_state_dict(state_dict) else: for layer in self.linear: - layer.weight.data.normal_(mean=0.0, std=0.01) - layer.bias.data.zero_() + if not "ReLU" in layer.__str__(): + layer.weight.data.normal_(mean=0.0, std=0.01) + layer.bias.data.zero_() self.to(devices.device) @@ -69,7 +74,8 @@ class HypernetworkModule(torch.nn.Module): def trainables(self): layer_structure = [] for layer in self.linear: - layer_structure += [layer.weight, layer.bias] + if not "ReLU" in layer.__str__(): + layer_structure += [layer.weight, layer.bias] return layer_structure @@ -81,7 +87,7 @@ class Hypernetwork: filename = None name = None - def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False): + def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False, activation_func=None): self.filename = None self.name = name self.layers = {} @@ -90,11 +96,12 @@ class Hypernetwork: self.sd_checkpoint_name = None self.layer_structure = layer_structure self.add_layer_norm = add_layer_norm + self.activation_func = activation_func for size in enable_sizes or []: self.layers[size] = ( - HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm), - HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm), + HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func), + HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func), ) def weights(self): @@ -117,6 +124,7 @@ class Hypernetwork: state_dict['name'] = self.name state_dict['layer_structure'] = self.layer_structure state_dict['is_layer_norm'] = self.add_layer_norm + state_dict['activation_func'] = self.activation_func state_dict['sd_checkpoint'] = self.sd_checkpoint state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name @@ -131,12 +139,13 @@ class Hypernetwork: self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) self.add_layer_norm = state_dict.get('is_layer_norm', False) + self.activation_func = state_dict.get('activation_func', None) for size, sd in state_dict.items(): if type(size) == int: self.layers[size] = ( - HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm), - HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm), + HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm, self.activation_func), + HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm, self.activation_func), ) self.name = state_dict.get('name', self.name) diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index 08f75f15..83f9547b 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -10,7 +10,7 @@ from modules import sd_hijack, shared, devices from modules.hypernetworks import hypernetwork -def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False): +def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False, activation_func=None): fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") assert not os.path.exists(fn), f"file {fn} already exists" @@ -22,6 +22,7 @@ def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm enable_sizes=[int(x) for x in enable_sizes], layer_structure=layer_structure, add_layer_norm=add_layer_norm, + activation_func=activation_func, ) hypernet.save(fn) diff --git a/modules/ui.py b/modules/ui.py index d2e24880..8751fa9c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -5,43 +5,44 @@ import json import math import mimetypes import os +import platform import random +import subprocess as sp import sys import tempfile import time import traceback -import platform -import subprocess as sp from functools import partial, reduce +import gradio as gr +import gradio.routes +import gradio.utils import numpy as np +import piexif import torch from PIL import Image, PngImagePlugin -import piexif -import gradio as gr -import gradio.utils -import gradio.routes - -from modules import sd_hijack, sd_models, localization +from modules import localization, sd_hijack, sd_models from modules.paths import script_path -from modules.shared import opts, cmd_opts, restricted_opts +from modules.shared import cmd_opts, opts, restricted_opts + if cmd_opts.deepdanbooru: from modules.deepbooru import get_deepbooru_tags -import modules.shared as shared -from modules.sd_samplers import samplers, samplers_for_img2img -from modules.sd_hijack import model_hijack -import modules.ldsr_model -import modules.scripts -import modules.gfpgan_model + import modules.codeformer_model -import modules.styles import modules.generation_parameters_copypaste -from modules import prompt_parser -from modules.images import save_image -import modules.textual_inversion.ui +import modules.gfpgan_model import modules.hypernetworks.ui import modules.images_history as img_his +import modules.ldsr_model +import modules.scripts +import modules.shared as shared +import modules.styles +import modules.textual_inversion.ui +from modules import prompt_parser +from modules.images import save_image +from modules.sd_hijack import model_hijack +from modules.sd_samplers import samplers, samplers_for_img2img # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI mimetypes.init() @@ -268,8 +269,8 @@ def calc_time_left(progress, threshold, label, force_display): time_since_start = time.time() - shared.state.time_start eta = (time_since_start/progress) eta_relative = eta-time_since_start - if (eta_relative > threshold and progress > 0.02) or force_display: - return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative)) + if (eta_relative > threshold and progress > 0.02) or force_display: + return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative)) else: return "" @@ -1219,6 +1220,7 @@ def create_ui(wrap_gradio_gpu_call): new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"]) new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'") new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization") + new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["relu", "leakyrelu"]) with gr.Row(): with gr.Column(scale=3): @@ -1303,6 +1305,7 @@ def create_ui(wrap_gradio_gpu_call): new_hypernetwork_sizes, new_hypernetwork_layer_structure, new_hypernetwork_add_layer_norm, + new_hypernetwork_activation_func, ], outputs=[ train_hypernetwork_name,