Merge remote-tracking branch 'origin/master'
This commit is contained in:
commit
77dcb21688
5 changed files with 135 additions and 15 deletions
|
@ -111,8 +111,9 @@ def run_pnginfo(image):
|
||||||
|
|
||||||
items['exif comment'] = exif_comment
|
items['exif comment'] = exif_comment
|
||||||
|
|
||||||
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif']:
|
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
|
||||||
del items[field]
|
'loop', 'background', 'timestamp', 'duration']:
|
||||||
|
items.pop(field, None)
|
||||||
|
|
||||||
|
|
||||||
info = ''
|
info = ''
|
||||||
|
|
|
@ -188,7 +188,11 @@ def fix_seed(p):
|
||||||
def process_images(p: StableDiffusionProcessing) -> Processed:
|
def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||||
|
|
||||||
|
if type(p.prompt) == list:
|
||||||
|
assert(len(p.prompt) > 0)
|
||||||
|
else:
|
||||||
assert p.prompt is not None
|
assert p.prompt is not None
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
fix_seed(p)
|
fix_seed(p)
|
||||||
|
@ -265,6 +269,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
|
|
||||||
|
if (len(prompts) == 0):
|
||||||
|
break
|
||||||
|
|
||||||
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
||||||
#c = p.sd_model.get_learned_conditioning(prompts)
|
#c = p.sd_model.get_learned_conditioning(prompts)
|
||||||
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
|
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
|
||||||
|
|
63
script.js
63
script.js
|
@ -76,6 +76,41 @@ function gradioApp(){
|
||||||
|
|
||||||
global_progressbar = null
|
global_progressbar = null
|
||||||
|
|
||||||
|
function closeModal() {
|
||||||
|
gradioApp().getElementById("lightboxModal").style.display = "none";
|
||||||
|
}
|
||||||
|
|
||||||
|
function showModal(elem) {
|
||||||
|
gradioApp().getElementById("modalImage").src = elem.src
|
||||||
|
gradioApp().getElementById("lightboxModal").style.display = "block";
|
||||||
|
}
|
||||||
|
|
||||||
|
function showGalleryImage(){
|
||||||
|
setTimeout(function() {
|
||||||
|
fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain')
|
||||||
|
|
||||||
|
if(fullImg_preview != null){
|
||||||
|
fullImg_preview.forEach(function function_name(e) {
|
||||||
|
if(e && e.parentElement.tagName == 'DIV'){
|
||||||
|
e.style.cursor='pointer'
|
||||||
|
|
||||||
|
elemfunc = function(elem){
|
||||||
|
elem.onclick = function(){showModal(elem)};
|
||||||
|
}
|
||||||
|
elemfunc(e)
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
}, 100);
|
||||||
|
}
|
||||||
|
|
||||||
|
function galleryImageHandler(e){
|
||||||
|
if(e && e.parentElement.tagName == 'BUTTON'){
|
||||||
|
e.onclick = showGalleryImage;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
function addTitles(root){
|
function addTitles(root){
|
||||||
root.querySelectorAll('span, button, select').forEach(function(span){
|
root.querySelectorAll('span, button, select').forEach(function(span){
|
||||||
tooltip = titles[span.textContent];
|
tooltip = titles[span.textContent];
|
||||||
|
@ -118,12 +153,17 @@ function addTitles(root){
|
||||||
img2img_preview.style.height = img2img_gallery.clientHeight + "px"
|
img2img_preview.style.height = img2img_gallery.clientHeight + "px"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
window.setTimeout(requestProgress, 500)
|
window.setTimeout(requestProgress, 500)
|
||||||
});
|
});
|
||||||
mutationObserver.observe( progressbar, { childList:true, subtree:true })
|
mutationObserver.observe( progressbar, { childList:true, subtree:true })
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fullImg_preview = gradioApp().querySelectorAll('img.w-full')
|
||||||
|
|
||||||
|
if(fullImg_preview != null){
|
||||||
|
fullImg_preview.forEach(galleryImageHandler);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
document.addEventListener("DOMContentLoaded", function() {
|
document.addEventListener("DOMContentLoaded", function() {
|
||||||
|
@ -131,6 +171,27 @@ document.addEventListener("DOMContentLoaded", function() {
|
||||||
addTitles(gradioApp());
|
addTitles(gradioApp());
|
||||||
});
|
});
|
||||||
mutationObserver.observe( gradioApp(), { childList:true, subtree:true })
|
mutationObserver.observe( gradioApp(), { childList:true, subtree:true })
|
||||||
|
|
||||||
|
const modalFragment = document.createDocumentFragment();
|
||||||
|
const modal = document.createElement('div')
|
||||||
|
modal.onclick = closeModal;
|
||||||
|
|
||||||
|
const modalClose = document.createElement('span')
|
||||||
|
modalClose.className = 'modalClose cursor';
|
||||||
|
modalClose.innerHTML = '×'
|
||||||
|
modalClose.onclick = closeModal;
|
||||||
|
modal.id = "lightboxModal";
|
||||||
|
modal.appendChild(modalClose)
|
||||||
|
|
||||||
|
const modalImage = document.createElement('img')
|
||||||
|
modalImage.id = 'modalImage';
|
||||||
|
modalImage.onclick = closeModal;
|
||||||
|
modal.appendChild(modalImage)
|
||||||
|
|
||||||
|
gradioApp().getRootNode().appendChild(modal)
|
||||||
|
|
||||||
|
document.body.appendChild(modalFragment);
|
||||||
|
|
||||||
});
|
});
|
||||||
|
|
||||||
function selected_gallery_index(){
|
function selected_gallery_index(){
|
||||||
|
|
|
@ -13,28 +13,42 @@ from modules.shared import opts, cmd_opts, state
|
||||||
|
|
||||||
class Script(scripts.Script):
|
class Script(scripts.Script):
|
||||||
def title(self):
|
def title(self):
|
||||||
return "Prompts from file"
|
return "Prompts from file or textbox"
|
||||||
|
|
||||||
def ui(self, is_img2img):
|
def ui(self, is_img2img):
|
||||||
|
# This checkbox would look nicer as two tabs, but there are two problems:
|
||||||
|
# 1) There is a bug in Gradio 3.3 that prevents visibility from working on Tabs
|
||||||
|
# 2) Even with Gradio 3.3.1, returning a control (like Tabs) that can't be used as input
|
||||||
|
# causes a AttributeError: 'Tabs' object has no attribute 'preprocess' assert,
|
||||||
|
# due to the way Script assumes all controls returned can be used as inputs.
|
||||||
|
# Therefore, there's no good way to use grouping components right now,
|
||||||
|
# so we will use a checkbox! :)
|
||||||
|
checkbox_txt = gr.Checkbox(label="Show Textbox", value=False)
|
||||||
file = gr.File(label="File with inputs", type='bytes')
|
file = gr.File(label="File with inputs", type='bytes')
|
||||||
|
prompt_txt = gr.TextArea(label="Prompts")
|
||||||
|
checkbox_txt.change(fn=lambda x: [gr.File.update(visible = not x), gr.TextArea.update(visible = x)], inputs=[checkbox_txt], outputs=[file, prompt_txt])
|
||||||
|
return [checkbox_txt, file, prompt_txt]
|
||||||
|
|
||||||
return [file]
|
def run(self, p, checkbox_txt, data: bytes, prompt_txt: str):
|
||||||
|
if (checkbox_txt):
|
||||||
def run(self, p, data: bytes):
|
lines = [x.strip() for x in prompt_txt.splitlines()]
|
||||||
|
else:
|
||||||
lines = [x.strip() for x in data.decode('utf8', errors='ignore').split("\n")]
|
lines = [x.strip() for x in data.decode('utf8', errors='ignore').split("\n")]
|
||||||
lines = [x for x in lines if len(x) > 0]
|
lines = [x for x in lines if len(x) > 0]
|
||||||
|
|
||||||
batch_count = math.ceil(len(lines) / p.batch_size)
|
img_count = len(lines) * p.n_iter
|
||||||
print(f"Will process {len(lines) * p.n_iter} images in {batch_count * p.n_iter} batches.")
|
batch_count = math.ceil(img_count / p.batch_size)
|
||||||
|
loop_count = math.ceil(batch_count / p.n_iter)
|
||||||
|
print(f"Will process {img_count} images in {batch_count} batches.")
|
||||||
|
|
||||||
p.do_not_save_grid = True
|
p.do_not_save_grid = True
|
||||||
|
|
||||||
state.job_count = batch_count
|
state.job_count = batch_count
|
||||||
|
|
||||||
images = []
|
images = []
|
||||||
for batch_no in range(batch_count):
|
for loop_no in range(loop_count):
|
||||||
state.job = f"{batch_no + 1} out of {batch_count * p.n_iter}"
|
state.job = f"{loop_no + 1} out of {loop_count}"
|
||||||
p.prompt = lines[batch_no*p.batch_size:(batch_no+1)*p.batch_size] * p.n_iter
|
p.prompt = lines[loop_no*p.batch_size:(loop_no+1)*p.batch_size] * p.n_iter
|
||||||
proc = process_images(p)
|
proc = process_images(p)
|
||||||
images += proc.images
|
images += proc.images
|
||||||
|
|
||||||
|
|
37
style.css
37
style.css
|
@ -196,3 +196,40 @@ input[type="range"]{
|
||||||
border-radius: 8px;
|
border-radius: 8px;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#lightboxModal{
|
||||||
|
display: none;
|
||||||
|
position: fixed;
|
||||||
|
z-index: 900;
|
||||||
|
padding-top: 100px;
|
||||||
|
left: 0;
|
||||||
|
top: 0;
|
||||||
|
width: 100%;
|
||||||
|
height: 100%;
|
||||||
|
overflow: auto;
|
||||||
|
background-color: rgba(20, 20, 20, 0.95);
|
||||||
|
}
|
||||||
|
|
||||||
|
.modalClose {
|
||||||
|
color: white;
|
||||||
|
position: absolute;
|
||||||
|
top: 10px;
|
||||||
|
right: 25px;
|
||||||
|
font-size: 35px;
|
||||||
|
font-weight: bold;
|
||||||
|
}
|
||||||
|
|
||||||
|
.modalClose:hover,
|
||||||
|
.modalClose:focus {
|
||||||
|
color: #999;
|
||||||
|
text-decoration: none;
|
||||||
|
cursor: pointer;
|
||||||
|
}
|
||||||
|
|
||||||
|
#modalImage {
|
||||||
|
display: block;
|
||||||
|
margin-left: auto;
|
||||||
|
margin-right: auto;
|
||||||
|
margin-top: auto;
|
||||||
|
width: auto;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue