Merge remote-tracking branch 'origin/master'

This commit is contained in:
AUTOMATIC 2022-09-17 15:39:30 +03:00
commit 77dcb21688
5 changed files with 135 additions and 15 deletions

View file

@ -111,8 +111,9 @@ def run_pnginfo(image):
items['exif comment'] = exif_comment items['exif comment'] = exif_comment
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif']: for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
del items[field] 'loop', 'background', 'timestamp', 'duration']:
items.pop(field, None)
info = '' info = ''

View file

@ -188,7 +188,11 @@ def fix_seed(p):
def process_images(p: StableDiffusionProcessing) -> Processed: def process_images(p: StableDiffusionProcessing) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
assert p.prompt is not None if type(p.prompt) == list:
assert(len(p.prompt) > 0)
else:
assert p.prompt is not None
devices.torch_gc() devices.torch_gc()
fix_seed(p) fix_seed(p)
@ -265,6 +269,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size] seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
if (len(prompts) == 0):
break
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt]) #uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
#c = p.sd_model.get_learned_conditioning(prompts) #c = p.sd_model.get_learned_conditioning(prompts)
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps) uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)

View file

@ -76,6 +76,41 @@ function gradioApp(){
global_progressbar = null global_progressbar = null
function closeModal() {
gradioApp().getElementById("lightboxModal").style.display = "none";
}
function showModal(elem) {
gradioApp().getElementById("modalImage").src = elem.src
gradioApp().getElementById("lightboxModal").style.display = "block";
}
function showGalleryImage(){
setTimeout(function() {
fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain')
if(fullImg_preview != null){
fullImg_preview.forEach(function function_name(e) {
if(e && e.parentElement.tagName == 'DIV'){
e.style.cursor='pointer'
elemfunc = function(elem){
elem.onclick = function(){showModal(elem)};
}
elemfunc(e)
}
});
}
}, 100);
}
function galleryImageHandler(e){
if(e && e.parentElement.tagName == 'BUTTON'){
e.onclick = showGalleryImage;
}
}
function addTitles(root){ function addTitles(root){
root.querySelectorAll('span, button, select').forEach(function(span){ root.querySelectorAll('span, button, select').forEach(function(span){
tooltip = titles[span.textContent]; tooltip = titles[span.textContent];
@ -117,13 +152,18 @@ function addTitles(root){
img2img_preview.style.width = img2img_gallery.clientWidth + "px" img2img_preview.style.width = img2img_gallery.clientWidth + "px"
img2img_preview.style.height = img2img_gallery.clientHeight + "px" img2img_preview.style.height = img2img_gallery.clientHeight + "px"
} }
window.setTimeout(requestProgress, 500) window.setTimeout(requestProgress, 500)
}); });
mutationObserver.observe( progressbar, { childList:true, subtree:true }) mutationObserver.observe( progressbar, { childList:true, subtree:true })
} }
fullImg_preview = gradioApp().querySelectorAll('img.w-full')
if(fullImg_preview != null){
fullImg_preview.forEach(galleryImageHandler);
}
} }
document.addEventListener("DOMContentLoaded", function() { document.addEventListener("DOMContentLoaded", function() {
@ -131,6 +171,27 @@ document.addEventListener("DOMContentLoaded", function() {
addTitles(gradioApp()); addTitles(gradioApp());
}); });
mutationObserver.observe( gradioApp(), { childList:true, subtree:true }) mutationObserver.observe( gradioApp(), { childList:true, subtree:true })
const modalFragment = document.createDocumentFragment();
const modal = document.createElement('div')
modal.onclick = closeModal;
const modalClose = document.createElement('span')
modalClose.className = 'modalClose cursor';
modalClose.innerHTML = '×'
modalClose.onclick = closeModal;
modal.id = "lightboxModal";
modal.appendChild(modalClose)
const modalImage = document.createElement('img')
modalImage.id = 'modalImage';
modalImage.onclick = closeModal;
modal.appendChild(modalImage)
gradioApp().getRootNode().appendChild(modal)
document.body.appendChild(modalFragment);
}); });
function selected_gallery_index(){ function selected_gallery_index(){

View file

@ -13,28 +13,42 @@ from modules.shared import opts, cmd_opts, state
class Script(scripts.Script): class Script(scripts.Script):
def title(self): def title(self):
return "Prompts from file" return "Prompts from file or textbox"
def ui(self, is_img2img): def ui(self, is_img2img):
# This checkbox would look nicer as two tabs, but there are two problems:
# 1) There is a bug in Gradio 3.3 that prevents visibility from working on Tabs
# 2) Even with Gradio 3.3.1, returning a control (like Tabs) that can't be used as input
# causes a AttributeError: 'Tabs' object has no attribute 'preprocess' assert,
# due to the way Script assumes all controls returned can be used as inputs.
# Therefore, there's no good way to use grouping components right now,
# so we will use a checkbox! :)
checkbox_txt = gr.Checkbox(label="Show Textbox", value=False)
file = gr.File(label="File with inputs", type='bytes') file = gr.File(label="File with inputs", type='bytes')
prompt_txt = gr.TextArea(label="Prompts")
checkbox_txt.change(fn=lambda x: [gr.File.update(visible = not x), gr.TextArea.update(visible = x)], inputs=[checkbox_txt], outputs=[file, prompt_txt])
return [checkbox_txt, file, prompt_txt]
return [file] def run(self, p, checkbox_txt, data: bytes, prompt_txt: str):
if (checkbox_txt):
def run(self, p, data: bytes): lines = [x.strip() for x in prompt_txt.splitlines()]
lines = [x.strip() for x in data.decode('utf8', errors='ignore').split("\n")] else:
lines = [x.strip() for x in data.decode('utf8', errors='ignore').split("\n")]
lines = [x for x in lines if len(x) > 0] lines = [x for x in lines if len(x) > 0]
batch_count = math.ceil(len(lines) / p.batch_size) img_count = len(lines) * p.n_iter
print(f"Will process {len(lines) * p.n_iter} images in {batch_count * p.n_iter} batches.") batch_count = math.ceil(img_count / p.batch_size)
loop_count = math.ceil(batch_count / p.n_iter)
print(f"Will process {img_count} images in {batch_count} batches.")
p.do_not_save_grid = True p.do_not_save_grid = True
state.job_count = batch_count state.job_count = batch_count
images = [] images = []
for batch_no in range(batch_count): for loop_no in range(loop_count):
state.job = f"{batch_no + 1} out of {batch_count * p.n_iter}" state.job = f"{loop_no + 1} out of {loop_count}"
p.prompt = lines[batch_no*p.batch_size:(batch_no+1)*p.batch_size] * p.n_iter p.prompt = lines[loop_no*p.batch_size:(loop_no+1)*p.batch_size] * p.n_iter
proc = process_images(p) proc = process_images(p)
images += proc.images images += proc.images

View file

@ -196,3 +196,40 @@ input[type="range"]{
border-radius: 8px; border-radius: 8px;
} }
#lightboxModal{
display: none;
position: fixed;
z-index: 900;
padding-top: 100px;
left: 0;
top: 0;
width: 100%;
height: 100%;
overflow: auto;
background-color: rgba(20, 20, 20, 0.95);
}
.modalClose {
color: white;
position: absolute;
top: 10px;
right: 25px;
font-size: 35px;
font-weight: bold;
}
.modalClose:hover,
.modalClose:focus {
color: #999;
text-decoration: none;
cursor: pointer;
}
#modalImage {
display: block;
margin-left: auto;
margin-right: auto;
margin-top: auto;
width: auto;
}