do not replace entire unet for the resolution hack

This commit is contained in:
AUTOMATIC 2022-12-10 09:14:30 +03:00
parent 2641d1b83b
commit 7dbfd8a7d8
3 changed files with 33 additions and 30 deletions

View file

@ -11,7 +11,7 @@ import modules.textual_inversion.textual_inversion
from modules import prompt_parser, devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint from modules import prompt_parser, devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
from modules.hypernetworks import hypernetwork from modules.hypernetworks import hypernetwork
from modules.shared import opts, device, cmd_opts from modules.shared import opts, device, cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet
from modules.sd_hijack_optimizations import invokeAI_mps_available from modules.sd_hijack_optimizations import invokeAI_mps_available
@ -35,11 +35,12 @@ ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"]
ldm.modules.attention.print = lambda *args: None ldm.modules.attention.print = lambda *args: None
ldm.modules.diffusionmodules.model.print = lambda *args: None ldm.modules.diffusionmodules.model.print = lambda *args: None
def apply_optimizations(): def apply_optimizations():
undo_optimizations() undo_optimizations()
ldm.modules.diffusionmodules.model.nonlinearity = silu ldm.modules.diffusionmodules.model.nonlinearity = silu
ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = sd_hijack_optimizations.patched_unet_forward ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
print("Applying xformers cross attention optimization.") print("Applying xformers cross attention optimization.")

View file

@ -313,31 +313,3 @@ def xformers_attnblock_forward(self, x):
return x + out return x + out
except NotImplementedError: except NotImplementedError:
return cross_attention_attnblock_forward(self, x) return cross_attention_attnblock_forward(self, x)
def patched_unet_forward(self, x, timesteps=None, context=None, y=None,**kwargs):
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape == (x.shape[0],)
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
if h.shape[-2:] != hs[-1].shape[-2:]:
h = F.interpolate(h, hs[-1].shape[-2:], mode="nearest")
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)

30
modules/sd_hijack_unet.py Normal file
View file

@ -0,0 +1,30 @@
import torch
class TorchHijackForUnet:
"""
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
this makes it possible to create pictures with dimensions that are muliples of 8 rather than 64
"""
def __getattr__(self, item):
if item == 'cat':
return self.cat
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def cat(self, tensors, *args, **kwargs):
if len(tensors) == 2:
a, b = tensors
if a.shape[-2:] != b.shape[-2:]:
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
tensors = (a, b)
return torch.cat(tensors, *args, **kwargs)
th = TorchHijackForUnet()