fix for bad data in saved text files when batch size or batch cunt > 1
This commit is contained in:
parent
7b9c301f89
commit
7ec7a3b121
1 changed files with 17 additions and 18 deletions
17
webui.py
17
webui.py
|
@ -404,7 +404,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
||||||
|
|
||||||
os.makedirs(path, exist_ok=True)
|
os.makedirs(path, exist_ok=True)
|
||||||
|
|
||||||
filecount = len(os.listdir(path))
|
filecount = len([x for x in os.listdir(path) if os.path.splitext(x)[1] == '.' + extension])
|
||||||
fullfn = "a.png"
|
fullfn = "a.png"
|
||||||
fullfn_without_extension = "a"
|
fullfn_without_extension = "a"
|
||||||
for i in range(100):
|
for i in range(100):
|
||||||
|
@ -1126,11 +1126,12 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
all_prompts = p.batch_size * p.n_iter * [prompt]
|
all_prompts = p.batch_size * p.n_iter * [prompt]
|
||||||
all_seeds = [seed + x for x in range(len(all_prompts))]
|
all_seeds = [seed + x for x in range(len(all_prompts))]
|
||||||
|
|
||||||
|
def infotext(iteration=0, position_in_batch=0):
|
||||||
generation_params = {
|
generation_params = {
|
||||||
"Steps": p.steps,
|
"Steps": p.steps,
|
||||||
"Sampler": samplers[p.sampler_index].name,
|
"Sampler": samplers[p.sampler_index].name,
|
||||||
"CFG scale": p.cfg_scale,
|
"CFG scale": p.cfg_scale,
|
||||||
"Seed": seed,
|
"Seed": all_seeds[position_in_batch + iteration * p.batch_size],
|
||||||
"GFPGAN": ("GFPGAN" if p.use_GFPGAN else None)
|
"GFPGAN": ("GFPGAN" if p.use_GFPGAN else None)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1139,7 +1140,6 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
|
|
||||||
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
|
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
|
||||||
|
|
||||||
def infotext():
|
|
||||||
return f"{prompt}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments])
|
return f"{prompt}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments])
|
||||||
|
|
||||||
if os.path.exists(cmd_opts.embeddings_dir):
|
if os.path.exists(cmd_opts.embeddings_dir):
|
||||||
|
@ -1202,7 +1202,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
image = image.convert('RGB')
|
image = image.convert('RGB')
|
||||||
|
|
||||||
if opts.samples_save and not p.do_not_save_samples:
|
if opts.samples_save and not p.do_not_save_samples:
|
||||||
save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext())
|
save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i))
|
||||||
|
|
||||||
output_images.append(image)
|
output_images.append(image)
|
||||||
|
|
||||||
|
@ -1573,14 +1573,13 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
self.mask = torch.asarray(1.0 - latmask).to(device).type(sd_model.dtype)
|
self.mask = torch.asarray(1.0 - latmask).to(device).type(sd_model.dtype)
|
||||||
self.nmask = torch.asarray(latmask).to(device).type(sd_model.dtype)
|
self.nmask = torch.asarray(latmask).to(device).type(sd_model.dtype)
|
||||||
|
|
||||||
def sample(self, x, conditioning, unconditional_conditioning):
|
|
||||||
|
|
||||||
if self.mask is not None:
|
|
||||||
if self.inpainting_fill == 2:
|
if self.inpainting_fill == 2:
|
||||||
x = x * self.mask + create_random_tensors(x.shape[1:], [self.seed + x + 1 for x in range(x.shape[0])]) * self.nmask
|
self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], [self.seed + x + 1 for x in range(self.init_latent.shape[0])]) * self.nmask
|
||||||
elif self.inpainting_fill == 3:
|
elif self.inpainting_fill == 3:
|
||||||
x = x * self.mask
|
self.init_latent = self.init_latent * self.mask
|
||||||
|
|
||||||
|
|
||||||
|
def sample(self, x, conditioning, unconditional_conditioning):
|
||||||
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
|
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
|
||||||
|
|
||||||
if self.mask is not None:
|
if self.mask is not None:
|
||||||
|
|
Loading…
Reference in a new issue