fix for bad data in saved text files when batch size or batch cunt > 1

This commit is contained in:
AUTOMATIC 2022-09-02 14:33:43 +03:00
parent 7b9c301f89
commit 7ec7a3b121

View file

@ -404,7 +404,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
os.makedirs(path, exist_ok=True) os.makedirs(path, exist_ok=True)
filecount = len(os.listdir(path)) filecount = len([x for x in os.listdir(path) if os.path.splitext(x)[1] == '.' + extension])
fullfn = "a.png" fullfn = "a.png"
fullfn_without_extension = "a" fullfn_without_extension = "a"
for i in range(100): for i in range(100):
@ -1126,20 +1126,20 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
all_prompts = p.batch_size * p.n_iter * [prompt] all_prompts = p.batch_size * p.n_iter * [prompt]
all_seeds = [seed + x for x in range(len(all_prompts))] all_seeds = [seed + x for x in range(len(all_prompts))]
generation_params = { def infotext(iteration=0, position_in_batch=0):
"Steps": p.steps, generation_params = {
"Sampler": samplers[p.sampler_index].name, "Steps": p.steps,
"CFG scale": p.cfg_scale, "Sampler": samplers[p.sampler_index].name,
"Seed": seed, "CFG scale": p.cfg_scale,
"GFPGAN": ("GFPGAN" if p.use_GFPGAN else None) "Seed": all_seeds[position_in_batch + iteration * p.batch_size],
} "GFPGAN": ("GFPGAN" if p.use_GFPGAN else None)
}
if p.extra_generation_params is not None: if p.extra_generation_params is not None:
generation_params.update(p.extra_generation_params) generation_params.update(p.extra_generation_params)
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None]) generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
def infotext():
return f"{prompt}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments]) return f"{prompt}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments])
if os.path.exists(cmd_opts.embeddings_dir): if os.path.exists(cmd_opts.embeddings_dir):
@ -1202,7 +1202,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
image = image.convert('RGB') image = image.convert('RGB')
if opts.samples_save and not p.do_not_save_samples: if opts.samples_save and not p.do_not_save_samples:
save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext()) save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i))
output_images.append(image) output_images.append(image)
@ -1573,14 +1573,13 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.mask = torch.asarray(1.0 - latmask).to(device).type(sd_model.dtype) self.mask = torch.asarray(1.0 - latmask).to(device).type(sd_model.dtype)
self.nmask = torch.asarray(latmask).to(device).type(sd_model.dtype) self.nmask = torch.asarray(latmask).to(device).type(sd_model.dtype)
def sample(self, x, conditioning, unconditional_conditioning):
if self.mask is not None:
if self.inpainting_fill == 2: if self.inpainting_fill == 2:
x = x * self.mask + create_random_tensors(x.shape[1:], [self.seed + x + 1 for x in range(x.shape[0])]) * self.nmask self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], [self.seed + x + 1 for x in range(self.init_latent.shape[0])]) * self.nmask
elif self.inpainting_fill == 3: elif self.inpainting_fill == 3:
x = x * self.mask self.init_latent = self.init_latent * self.mask
def sample(self, x, conditioning, unconditional_conditioning):
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning) samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
if self.mask is not None: if self.mask is not None: