Move processing's models into models.py
It didn't make sense to have two differente files for the same and "models" is a more descriptive name.
This commit is contained in:
parent
e0ca4dfbc1
commit
866b36d705
3 changed files with 120 additions and 157 deletions
|
@ -1,16 +1,11 @@
|
||||||
from modules.api.processing import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI
|
import uvicorn
|
||||||
|
from gradio import processing_utils
|
||||||
|
from fastapi import APIRouter, HTTPException
|
||||||
|
import modules.shared as shared
|
||||||
|
from modules.api.models import *
|
||||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||||
from modules.sd_samplers import all_samplers
|
from modules.sd_samplers import all_samplers
|
||||||
import modules.shared as shared
|
|
||||||
import uvicorn
|
|
||||||
from fastapi import APIRouter, HTTPException
|
|
||||||
import json
|
|
||||||
import io
|
|
||||||
import base64
|
|
||||||
from modules.api.models import *
|
|
||||||
from PIL import Image
|
|
||||||
from modules.extras import run_extras
|
from modules.extras import run_extras
|
||||||
from gradio import processing_utils
|
|
||||||
|
|
||||||
def upscaler_to_index(name: str):
|
def upscaler_to_index(name: str):
|
||||||
try:
|
try:
|
||||||
|
@ -20,29 +15,6 @@ def upscaler_to_index(name: str):
|
||||||
|
|
||||||
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
||||||
|
|
||||||
# def img_to_base64(img: str):
|
|
||||||
# buffer = io.BytesIO()
|
|
||||||
# img.save(buffer, format="png")
|
|
||||||
# return base64.b64encode(buffer.getvalue())
|
|
||||||
|
|
||||||
# def base64_to_bytes(base64Img: str):
|
|
||||||
# if "," in base64Img:
|
|
||||||
# base64Img = base64Img.split(",")[1]
|
|
||||||
# return io.BytesIO(base64.b64decode(base64Img))
|
|
||||||
|
|
||||||
# def base64_to_images(base64Imgs: list[str]):
|
|
||||||
# imgs = []
|
|
||||||
# for img in base64Imgs:
|
|
||||||
# img = Image.open(base64_to_bytes(img))
|
|
||||||
# imgs.append(img)
|
|
||||||
# return imgs
|
|
||||||
|
|
||||||
class ImageToImageResponse(BaseModel):
|
|
||||||
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
|
||||||
parameters: dict
|
|
||||||
info: str
|
|
||||||
|
|
||||||
|
|
||||||
class Api:
|
class Api:
|
||||||
def __init__(self, app, queue_lock):
|
def __init__(self, app, queue_lock):
|
||||||
self.router = APIRouter()
|
self.router = APIRouter()
|
||||||
|
@ -51,15 +23,7 @@ class Api:
|
||||||
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
|
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
|
||||||
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
|
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
|
||||||
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
|
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
|
||||||
self.app.add_api_route("/sdapi/v1/extra-batch-image", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
||||||
|
|
||||||
# def __base64_to_image(self, base64_string):
|
|
||||||
# # if has a comma, deal with prefix
|
|
||||||
# if "," in base64_string:
|
|
||||||
# base64_string = base64_string.split(",")[1]
|
|
||||||
# imgdata = base64.b64decode(base64_string)
|
|
||||||
# # convert base64 to PIL image
|
|
||||||
# return Image.open(io.BytesIO(imgdata))
|
|
||||||
|
|
||||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||||
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
||||||
|
@ -81,7 +45,7 @@ class Api:
|
||||||
|
|
||||||
b64images = list(map(processing_utils.encode_pil_to_base64, processed.images))
|
b64images = list(map(processing_utils.encode_pil_to_base64, processed.images))
|
||||||
|
|
||||||
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=processed.info)
|
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.info)
|
||||||
|
|
||||||
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
||||||
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
||||||
|
@ -120,10 +84,7 @@ class Api:
|
||||||
processed = process_images(p)
|
processed = process_images(p)
|
||||||
|
|
||||||
b64images = list(map(processing_utils.encode_pil_to_base64, processed.images))
|
b64images = list(map(processing_utils.encode_pil_to_base64, processed.images))
|
||||||
# for i in processed.images:
|
|
||||||
# buffer = io.BytesIO()
|
|
||||||
# i.save(buffer, format="png")
|
|
||||||
# b64images.append(base64.b64encode(buffer.getvalue()))
|
|
||||||
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.info)
|
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.info)
|
||||||
|
|
||||||
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
|
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
|
||||||
|
@ -134,12 +95,12 @@ class Api:
|
||||||
reqDict.pop('upscaler_1')
|
reqDict.pop('upscaler_1')
|
||||||
reqDict.pop('upscaler_2')
|
reqDict.pop('upscaler_2')
|
||||||
|
|
||||||
reqDict['image'] = processing_utils.decode_base64_to_file(reqDict['image'])
|
reqDict['image'] = processing_utils.decode_base64_to_image(reqDict['image'])
|
||||||
|
|
||||||
with self.queue_lock:
|
with self.queue_lock:
|
||||||
result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="")
|
result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="")
|
||||||
|
|
||||||
return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0]), html_info_x=result[1], html_info=result[2])
|
return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0][0]), html_info_x=result[1], html_info=result[2])
|
||||||
|
|
||||||
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
|
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
|
||||||
upscaler1Index = upscaler_to_index(req.upscaler_1)
|
upscaler1Index = upscaler_to_index(req.upscaler_1)
|
||||||
|
|
|
@ -1,10 +1,118 @@
|
||||||
from pydantic import BaseModel, Field, Json
|
import inspect
|
||||||
|
from pydantic import BaseModel, Field, Json, create_model
|
||||||
|
from typing import Any, Optional
|
||||||
from typing_extensions import Literal
|
from typing_extensions import Literal
|
||||||
|
from inflection import underscore
|
||||||
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
||||||
from modules.shared import sd_upscalers
|
from modules.shared import sd_upscalers
|
||||||
|
|
||||||
|
API_NOT_ALLOWED = [
|
||||||
|
"self",
|
||||||
|
"kwargs",
|
||||||
|
"sd_model",
|
||||||
|
"outpath_samples",
|
||||||
|
"outpath_grids",
|
||||||
|
"sampler_index",
|
||||||
|
"do_not_save_samples",
|
||||||
|
"do_not_save_grid",
|
||||||
|
"extra_generation_params",
|
||||||
|
"overlay_images",
|
||||||
|
"do_not_reload_embeddings",
|
||||||
|
"seed_enable_extras",
|
||||||
|
"prompt_for_display",
|
||||||
|
"sampler_noise_scheduler_override",
|
||||||
|
"ddim_discretize"
|
||||||
|
]
|
||||||
|
|
||||||
|
class ModelDef(BaseModel):
|
||||||
|
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
||||||
|
|
||||||
|
field: str
|
||||||
|
field_alias: str
|
||||||
|
field_type: Any
|
||||||
|
field_value: Any
|
||||||
|
|
||||||
|
|
||||||
|
class PydanticModelGenerator:
|
||||||
|
"""
|
||||||
|
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
|
||||||
|
source_data is a snapshot of the default values produced by the class
|
||||||
|
params are the names of the actual keys required by __init__
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: str = None,
|
||||||
|
class_instance = None,
|
||||||
|
additional_fields = None,
|
||||||
|
):
|
||||||
|
def field_type_generator(k, v):
|
||||||
|
# field_type = str if not overrides.get(k) else overrides[k]["type"]
|
||||||
|
# print(k, v.annotation, v.default)
|
||||||
|
field_type = v.annotation
|
||||||
|
|
||||||
|
return Optional[field_type]
|
||||||
|
|
||||||
|
def merge_class_params(class_):
|
||||||
|
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
|
||||||
|
parameters = {}
|
||||||
|
for classes in all_classes:
|
||||||
|
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
|
||||||
|
return parameters
|
||||||
|
|
||||||
|
|
||||||
|
self._model_name = model_name
|
||||||
|
self._class_data = merge_class_params(class_instance)
|
||||||
|
self._model_def = [
|
||||||
|
ModelDef(
|
||||||
|
field=underscore(k),
|
||||||
|
field_alias=k,
|
||||||
|
field_type=field_type_generator(k, v),
|
||||||
|
field_value=v.default
|
||||||
|
)
|
||||||
|
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
|
||||||
|
]
|
||||||
|
|
||||||
|
for fields in additional_fields:
|
||||||
|
self._model_def.append(ModelDef(
|
||||||
|
field=underscore(fields["key"]),
|
||||||
|
field_alias=fields["key"],
|
||||||
|
field_type=fields["type"],
|
||||||
|
field_value=fields["default"]))
|
||||||
|
|
||||||
|
def generate_model(self):
|
||||||
|
"""
|
||||||
|
Creates a pydantic BaseModel
|
||||||
|
from the json and overrides provided at initialization
|
||||||
|
"""
|
||||||
|
fields = {
|
||||||
|
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def
|
||||||
|
}
|
||||||
|
DynamicModel = create_model(self._model_name, **fields)
|
||||||
|
DynamicModel.__config__.allow_population_by_field_name = True
|
||||||
|
DynamicModel.__config__.allow_mutation = True
|
||||||
|
return DynamicModel
|
||||||
|
|
||||||
|
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
||||||
|
"StableDiffusionProcessingTxt2Img",
|
||||||
|
StableDiffusionProcessingTxt2Img,
|
||||||
|
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
||||||
|
).generate_model()
|
||||||
|
|
||||||
|
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
||||||
|
"StableDiffusionProcessingImg2Img",
|
||||||
|
StableDiffusionProcessingImg2Img,
|
||||||
|
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}]
|
||||||
|
).generate_model()
|
||||||
|
|
||||||
class TextToImageResponse(BaseModel):
|
class TextToImageResponse(BaseModel):
|
||||||
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
parameters: str
|
parameters: dict
|
||||||
|
info: str
|
||||||
|
|
||||||
|
class ImageToImageResponse(BaseModel):
|
||||||
|
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
parameters: dict
|
||||||
info: str
|
info: str
|
||||||
|
|
||||||
class ExtrasBaseRequest(BaseModel):
|
class ExtrasBaseRequest(BaseModel):
|
||||||
|
|
|
@ -1,106 +0,0 @@
|
||||||
from array import array
|
|
||||||
from inflection import underscore
|
|
||||||
from typing import Any, Dict, Optional
|
|
||||||
from pydantic import BaseModel, Field, create_model
|
|
||||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
|
||||||
import inspect
|
|
||||||
|
|
||||||
|
|
||||||
API_NOT_ALLOWED = [
|
|
||||||
"self",
|
|
||||||
"kwargs",
|
|
||||||
"sd_model",
|
|
||||||
"outpath_samples",
|
|
||||||
"outpath_grids",
|
|
||||||
"sampler_index",
|
|
||||||
"do_not_save_samples",
|
|
||||||
"do_not_save_grid",
|
|
||||||
"extra_generation_params",
|
|
||||||
"overlay_images",
|
|
||||||
"do_not_reload_embeddings",
|
|
||||||
"seed_enable_extras",
|
|
||||||
"prompt_for_display",
|
|
||||||
"sampler_noise_scheduler_override",
|
|
||||||
"ddim_discretize"
|
|
||||||
]
|
|
||||||
|
|
||||||
class ModelDef(BaseModel):
|
|
||||||
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
|
||||||
|
|
||||||
field: str
|
|
||||||
field_alias: str
|
|
||||||
field_type: Any
|
|
||||||
field_value: Any
|
|
||||||
|
|
||||||
|
|
||||||
class PydanticModelGenerator:
|
|
||||||
"""
|
|
||||||
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
|
|
||||||
source_data is a snapshot of the default values produced by the class
|
|
||||||
params are the names of the actual keys required by __init__
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
model_name: str = None,
|
|
||||||
class_instance = None,
|
|
||||||
additional_fields = None,
|
|
||||||
):
|
|
||||||
def field_type_generator(k, v):
|
|
||||||
# field_type = str if not overrides.get(k) else overrides[k]["type"]
|
|
||||||
# print(k, v.annotation, v.default)
|
|
||||||
field_type = v.annotation
|
|
||||||
|
|
||||||
return Optional[field_type]
|
|
||||||
|
|
||||||
def merge_class_params(class_):
|
|
||||||
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
|
|
||||||
parameters = {}
|
|
||||||
for classes in all_classes:
|
|
||||||
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
|
|
||||||
return parameters
|
|
||||||
|
|
||||||
|
|
||||||
self._model_name = model_name
|
|
||||||
self._class_data = merge_class_params(class_instance)
|
|
||||||
self._model_def = [
|
|
||||||
ModelDef(
|
|
||||||
field=underscore(k),
|
|
||||||
field_alias=k,
|
|
||||||
field_type=field_type_generator(k, v),
|
|
||||||
field_value=v.default
|
|
||||||
)
|
|
||||||
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
|
|
||||||
]
|
|
||||||
|
|
||||||
for fields in additional_fields:
|
|
||||||
self._model_def.append(ModelDef(
|
|
||||||
field=underscore(fields["key"]),
|
|
||||||
field_alias=fields["key"],
|
|
||||||
field_type=fields["type"],
|
|
||||||
field_value=fields["default"]))
|
|
||||||
|
|
||||||
def generate_model(self):
|
|
||||||
"""
|
|
||||||
Creates a pydantic BaseModel
|
|
||||||
from the json and overrides provided at initialization
|
|
||||||
"""
|
|
||||||
fields = {
|
|
||||||
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def
|
|
||||||
}
|
|
||||||
DynamicModel = create_model(self._model_name, **fields)
|
|
||||||
DynamicModel.__config__.allow_population_by_field_name = True
|
|
||||||
DynamicModel.__config__.allow_mutation = True
|
|
||||||
return DynamicModel
|
|
||||||
|
|
||||||
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
|
||||||
"StableDiffusionProcessingTxt2Img",
|
|
||||||
StableDiffusionProcessingTxt2Img,
|
|
||||||
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
|
||||||
).generate_model()
|
|
||||||
|
|
||||||
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
|
||||||
"StableDiffusionProcessingImg2Img",
|
|
||||||
StableDiffusionProcessingImg2Img,
|
|
||||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}]
|
|
||||||
).generate_model()
|
|
Loading…
Reference in a new issue