prevent replacing torch_randn globally (instead replacing k_diffusion.sampling.torch) and add a setting to disable this all

This commit is contained in:
AUTOMATIC 2022-09-16 09:47:03 +03:00
parent 9d40212485
commit 87e8b9a2ab
3 changed files with 23 additions and 7 deletions

View file

@ -122,7 +122,7 @@ def slerp(val, low, high):
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None): def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
xs = [] xs = []
if p is not None and p.sampler is not None and len(seeds) > 1: if p is not None and p.sampler is not None and len(seeds) > 1 and opts.enable_batch_seeds:
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))] sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
else: else:
sampler_noises = None sampler_noises = None

View file

@ -175,7 +175,19 @@ def extended_trange(count, *args, **kwargs):
shared.total_tqdm.update() shared.total_tqdm.update()
original_randn_like = torch.randn_like class TorchHijack:
def __init__(self, kdiff_sampler):
self.kdiff_sampler = kdiff_sampler
def __getattr__(self, item):
if item == 'randn_like':
return self.kdiff_sampler.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
class KDiffusionSampler: class KDiffusionSampler:
def __init__(self, funcname, sd_model): def __init__(self, funcname, sd_model):
@ -186,8 +198,6 @@ class KDiffusionSampler:
self.sampler_noises = None self.sampler_noises = None
self.sampler_noise_index = 0 self.sampler_noise_index = 0
k_diffusion.sampling.torch.randn_like = self.randn_like
def callback_state(self, d): def callback_state(self, d):
store_latent(d["denoised"]) store_latent(d["denoised"])
@ -200,8 +210,7 @@ class KDiffusionSampler:
if noise is not None and x.shape == noise.shape: if noise is not None and x.shape == noise.shape:
res = noise res = noise
else: else:
print('generating') res = torch.randn_like(x)
res = original_randn_like(x)
self.sampler_noise_index += 1 self.sampler_noise_index += 1
return res return res
@ -223,6 +232,9 @@ class KDiffusionSampler:
if hasattr(k_diffusion.sampling, 'trange'): if hasattr(k_diffusion.sampling, 'trange'):
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs) k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
if self.sampler_noises is not None:
k_diffusion.sampling.torch = TorchHijack(self)
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state) return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
def sample(self, p, x, conditioning, unconditional_conditioning): def sample(self, p, x, conditioning, unconditional_conditioning):
@ -232,6 +244,9 @@ class KDiffusionSampler:
if hasattr(k_diffusion.sampling, 'trange'): if hasattr(k_diffusion.sampling, 'trange'):
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs) k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
if self.sampler_noises is not None:
k_diffusion.sampling.torch = TorchHijack(self)
samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state) samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
return samples_ddim return samples_ddim

View file

@ -124,7 +124,8 @@ class Options:
"add_model_hash_to_info": OptionInfo(False, "Add model hash to generation information"), "add_model_hash_to_info": OptionInfo(False, "Add model hash to generation information"),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"font": OptionInfo("", "Font for image grids that have text"), "font": OptionInfo("", "Font for image grids that have text"),
"enable_emphasis": OptionInfo(True, "Use (text) to make model pay more attention to text text and [text] to make it pay less attention"), "enable_emphasis": OptionInfo(True, "Use (text) to make model pay more attention to text and [text] to make it pay less attention"),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
"ESRGAN_tile": OptionInfo(192, "Tile size for upscaling. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), "ESRGAN_tile": OptionInfo(192, "Tile size for upscaling. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for upscaling. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for upscaling. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),