Fix model paths, ensure we have the right files.

Also, clean up logging in the ldsr arch file.
This commit is contained in:
d8ahazard 2022-09-30 08:55:04 -05:00
parent 64c6b13312
commit 8d60645106
2 changed files with 8 additions and 4 deletions

View file

@ -24,13 +24,18 @@ class UpscalerLDSR(Upscaler):
def load_model(self, path: str): def load_model(self, path: str):
# Remove incorrect project.yaml file if too big # Remove incorrect project.yaml file if too big
yaml_path = os.path.join(self.model_path, "project.yaml") yaml_path = os.path.join(self.model_path, "project.yaml")
old_model_path = os.path.join(self.model_path, "model.pth")
new_model_path = os.path.join(self.model_path, "model.ckpt")
if os.path.exists(yaml_path): if os.path.exists(yaml_path):
statinfo = os.stat(yaml_path) statinfo = os.stat(yaml_path)
if statinfo.st_size <= 10485760: if statinfo.st_size >= 10485760:
print("Removing invalid LDSR YAML file.") print("Removing invalid LDSR YAML file.")
os.remove(yaml_path) os.remove(yaml_path)
if os.path.exists(old_model_path):
print("Renaming model from model.pth to model.ckpt")
os.rename(old_model_path, new_model_path)
model = load_file_from_url(url=self.model_url, model_dir=self.model_path, model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
file_name="model.pth", progress=True) file_name="model.ckpt", progress=True)
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path, yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
file_name="project.yaml", progress=True) file_name="project.yaml", progress=True)

View file

@ -100,7 +100,6 @@ class LDSR:
# If we can adjust the max upscale size, then the 4 below should be our variable # If we can adjust the max upscale size, then the 4 below should be our variable
print("Foo") print("Foo")
down_sample_rate = target_scale / 4 down_sample_rate = target_scale / 4
print(f"Downsample rate is {down_sample_rate}")
wd = width_og * down_sample_rate wd = width_og * down_sample_rate
hd = height_og * down_sample_rate hd = height_og * down_sample_rate
width_downsampled_pre = int(wd) width_downsampled_pre = int(wd)
@ -111,7 +110,7 @@ class LDSR:
f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]') f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]')
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS) im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
else: else:
print(f"Down sample rate is 1 from {target_scale} / 4") print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
logs = self.run(model["model"], im_og, diffusion_steps, eta) logs = self.run(model["model"], im_og, diffusion_steps, eta)
sample = logs["sample"] sample = logs["sample"]