prompt_parser: allow spaces in schedules, add test, log/ignore errors
Only build the parser once (at import time) instead of for each step. doctest is run by simply executing modules/prompt_parser.py
This commit is contained in:
parent
1eb588cbf1
commit
90e911fd54
2 changed files with 95 additions and 54 deletions
|
@ -84,7 +84,7 @@ class StableDiffusionProcessing:
|
||||||
self.s_tmin = opts.s_tmin
|
self.s_tmin = opts.s_tmin
|
||||||
self.s_tmax = float('inf') # not representable as a standard ui option
|
self.s_tmax = float('inf') # not representable as a standard ui option
|
||||||
self.s_noise = opts.s_noise
|
self.s_noise = opts.s_noise
|
||||||
|
|
||||||
if not seed_enable_extras:
|
if not seed_enable_extras:
|
||||||
self.subseed = -1
|
self.subseed = -1
|
||||||
self.subseed_strength = 0
|
self.subseed_strength = 0
|
||||||
|
@ -296,7 +296,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
assert(len(p.prompt) > 0)
|
assert(len(p.prompt) > 0)
|
||||||
else:
|
else:
|
||||||
assert p.prompt is not None
|
assert p.prompt is not None
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
seed = get_fixed_seed(p.seed)
|
seed = get_fixed_seed(p.seed)
|
||||||
|
@ -359,8 +359,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
||||||
#c = p.sd_model.get_learned_conditioning(prompts)
|
#c = p.sd_model.get_learned_conditioning(prompts)
|
||||||
with devices.autocast():
|
with devices.autocast():
|
||||||
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
|
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
|
||||||
c = prompt_parser.get_learned_conditioning(prompts, p.steps)
|
c = prompt_parser.get_learned_conditioning(shared.sd_model, prompts, p.steps)
|
||||||
|
|
||||||
if len(model_hijack.comments) > 0:
|
if len(model_hijack.comments) > 0:
|
||||||
for comment in model_hijack.comments:
|
for comment in model_hijack.comments:
|
||||||
|
@ -527,7 +527,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||||
# GC now before running the next img2img to prevent running out of memory
|
# GC now before running the next img2img to prevent running out of memory
|
||||||
x = None
|
x = None
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
|
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
|
||||||
|
|
||||||
return samples
|
return samples
|
||||||
|
|
|
@ -1,10 +1,7 @@
|
||||||
import re
|
import re
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
import torch
|
|
||||||
from lark import Lark, Transformer, Visitor
|
|
||||||
import functools
|
|
||||||
|
|
||||||
import modules.shared as shared
|
import lark
|
||||||
|
|
||||||
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
||||||
# will be represented with prompt_schedule like this (assuming steps=100):
|
# will be represented with prompt_schedule like this (assuming steps=100):
|
||||||
|
@ -14,25 +11,48 @@ import modules.shared as shared
|
||||||
# [75, 'fantasy landscape with a lake and an oak in background masterful']
|
# [75, 'fantasy landscape with a lake and an oak in background masterful']
|
||||||
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
|
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
|
||||||
|
|
||||||
|
schedule_parser = lark.Lark(r"""
|
||||||
|
!start: (prompt | /[][():]/+)*
|
||||||
|
prompt: (emphasized | scheduled | plain | WHITESPACE)*
|
||||||
|
!emphasized: "(" prompt ")"
|
||||||
|
| "(" prompt ":" prompt ")"
|
||||||
|
| "[" prompt "]"
|
||||||
|
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
|
||||||
|
WHITESPACE: /\s+/
|
||||||
|
plain: /([^\\\[\]():]|\\.)+/
|
||||||
|
%import common.SIGNED_NUMBER -> NUMBER
|
||||||
|
""")
|
||||||
|
|
||||||
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
||||||
grammar = r"""
|
|
||||||
start: prompt
|
|
||||||
prompt: (emphasized | scheduled | weighted | plain)*
|
|
||||||
!emphasized: "(" prompt ")"
|
|
||||||
| "(" prompt ":" prompt ")"
|
|
||||||
| "[" prompt "]"
|
|
||||||
scheduled: "[" (prompt ":")? prompt ":" NUMBER "]"
|
|
||||||
!weighted: "{" weighted_item ("|" weighted_item)* "}"
|
|
||||||
!weighted_item: prompt (":" prompt)?
|
|
||||||
plain: /([^\\\[\](){}:|]|\\.)+/
|
|
||||||
%import common.SIGNED_NUMBER -> NUMBER
|
|
||||||
"""
|
"""
|
||||||
parser = Lark(grammar, parser='lalr')
|
>>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0]
|
||||||
|
>>> g("test")
|
||||||
|
[[10, 'test']]
|
||||||
|
>>> g("a [b:3]")
|
||||||
|
[[3, 'a '], [10, 'a b']]
|
||||||
|
>>> g("a [b: 3]")
|
||||||
|
[[3, 'a '], [10, 'a b']]
|
||||||
|
>>> g("a [[[b]]:2]")
|
||||||
|
[[2, 'a '], [10, 'a [[b]]']]
|
||||||
|
>>> g("[(a:2):3]")
|
||||||
|
[[3, ''], [10, '(a:2)']]
|
||||||
|
>>> g("a [b : c : 1] d")
|
||||||
|
[[1, 'a b d'], [10, 'a c d']]
|
||||||
|
>>> g("a[b:[c:d:2]:1]e")
|
||||||
|
[[1, 'abe'], [2, 'ace'], [10, 'ade']]
|
||||||
|
>>> g("a [unbalanced")
|
||||||
|
[[10, 'a [unbalanced']]
|
||||||
|
>>> g("a [b:.5] c")
|
||||||
|
[[5, 'a c'], [10, 'a b c']]
|
||||||
|
>>> g("a [{b|d{:.5] c") # not handling this right now
|
||||||
|
[[5, 'a c'], [10, 'a {b|d{ c']]
|
||||||
|
>>> g("((a][:b:c [d:3]")
|
||||||
|
[[3, '((a][:b:c '], [10, '((a][:b:c d']]
|
||||||
|
"""
|
||||||
|
|
||||||
def collect_steps(steps, tree):
|
def collect_steps(steps, tree):
|
||||||
l = [steps]
|
l = [steps]
|
||||||
class CollectSteps(Visitor):
|
class CollectSteps(lark.Visitor):
|
||||||
def scheduled(self, tree):
|
def scheduled(self, tree):
|
||||||
tree.children[-1] = float(tree.children[-1])
|
tree.children[-1] = float(tree.children[-1])
|
||||||
if tree.children[-1] < 1:
|
if tree.children[-1] < 1:
|
||||||
|
@ -43,13 +63,10 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
|
||||||
return sorted(set(l))
|
return sorted(set(l))
|
||||||
|
|
||||||
def at_step(step, tree):
|
def at_step(step, tree):
|
||||||
class AtStep(Transformer):
|
class AtStep(lark.Transformer):
|
||||||
def scheduled(self, args):
|
def scheduled(self, args):
|
||||||
if len(args) == 2:
|
before, after, _, when = args
|
||||||
before, after, when = (), *args
|
yield before or () if step <= when else after
|
||||||
else:
|
|
||||||
before, after, when = args
|
|
||||||
yield before if step <= when else after
|
|
||||||
def start(self, args):
|
def start(self, args):
|
||||||
def flatten(x):
|
def flatten(x):
|
||||||
if type(x) == str:
|
if type(x) == str:
|
||||||
|
@ -57,16 +74,22 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
|
||||||
else:
|
else:
|
||||||
for gen in x:
|
for gen in x:
|
||||||
yield from flatten(gen)
|
yield from flatten(gen)
|
||||||
return ''.join(flatten(args[0]))
|
return ''.join(flatten(args))
|
||||||
def plain(self, args):
|
def plain(self, args):
|
||||||
yield args[0].value
|
yield args[0].value
|
||||||
def __default__(self, data, children, meta):
|
def __default__(self, data, children, meta):
|
||||||
for child in children:
|
for child in children:
|
||||||
yield from child
|
yield from child
|
||||||
return AtStep().transform(tree)
|
return AtStep().transform(tree)
|
||||||
|
|
||||||
def get_schedule(prompt):
|
def get_schedule(prompt):
|
||||||
tree = parser.parse(prompt)
|
try:
|
||||||
|
tree = schedule_parser.parse(prompt)
|
||||||
|
except lark.exceptions.LarkError as e:
|
||||||
|
if 0:
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
return [[steps, prompt]]
|
||||||
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
|
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
|
||||||
|
|
||||||
promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
|
promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
|
||||||
|
@ -77,8 +100,7 @@ ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at
|
||||||
ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
|
ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
|
||||||
|
|
||||||
|
|
||||||
def get_learned_conditioning(prompts, steps):
|
def get_learned_conditioning(model, prompts, steps):
|
||||||
|
|
||||||
res = []
|
res = []
|
||||||
|
|
||||||
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
|
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
|
||||||
|
@ -92,7 +114,7 @@ def get_learned_conditioning(prompts, steps):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
texts = [x[1] for x in prompt_schedule]
|
texts = [x[1] for x in prompt_schedule]
|
||||||
conds = shared.sd_model.get_learned_conditioning(texts)
|
conds = model.get_learned_conditioning(texts)
|
||||||
|
|
||||||
cond_schedule = []
|
cond_schedule = []
|
||||||
for i, (end_at_step, text) in enumerate(prompt_schedule):
|
for i, (end_at_step, text) in enumerate(prompt_schedule):
|
||||||
|
@ -105,12 +127,13 @@ def get_learned_conditioning(prompts, steps):
|
||||||
|
|
||||||
|
|
||||||
def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
|
def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
|
||||||
res = torch.zeros(c.shape, device=shared.device, dtype=next(shared.sd_model.parameters()).dtype)
|
param = c.schedules[0][0].cond
|
||||||
|
res = torch.zeros(c.shape, device=param.device, dtype=param.dtype)
|
||||||
for i, cond_schedule in enumerate(c.schedules):
|
for i, cond_schedule in enumerate(c.schedules):
|
||||||
target_index = 0
|
target_index = 0
|
||||||
for curret_index, (end_at, cond) in enumerate(cond_schedule):
|
for current, (end_at, cond) in enumerate(cond_schedule):
|
||||||
if current_step <= end_at:
|
if current_step <= end_at:
|
||||||
target_index = curret_index
|
target_index = current
|
||||||
break
|
break
|
||||||
res[i] = cond_schedule[target_index].cond
|
res[i] = cond_schedule[target_index].cond
|
||||||
|
|
||||||
|
@ -148,23 +171,26 @@ def parse_prompt_attention(text):
|
||||||
\\ - literal character '\'
|
\\ - literal character '\'
|
||||||
anything else - just text
|
anything else - just text
|
||||||
|
|
||||||
Example:
|
>>> parse_prompt_attention('normal text')
|
||||||
|
[['normal text', 1.0]]
|
||||||
'a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).'
|
>>> parse_prompt_attention('an (important) word')
|
||||||
|
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
||||||
produces:
|
>>> parse_prompt_attention('(unbalanced')
|
||||||
|
[['unbalanced', 1.1]]
|
||||||
[
|
>>> parse_prompt_attention('\(literal\]')
|
||||||
['a ', 1.0],
|
[['(literal]', 1.0]]
|
||||||
['house', 1.5730000000000004],
|
>>> parse_prompt_attention('(unnecessary)(parens)')
|
||||||
[' ', 1.1],
|
[['unnecessaryparens', 1.1]]
|
||||||
['on', 1.0],
|
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
||||||
[' a ', 1.1],
|
[['a ', 1.0],
|
||||||
['hill', 0.55],
|
['house', 1.5730000000000004],
|
||||||
[', sun, ', 1.1],
|
[' ', 1.1],
|
||||||
['sky', 1.4641000000000006],
|
['on', 1.0],
|
||||||
['.', 1.1]
|
[' a ', 1.1],
|
||||||
]
|
['hill', 0.55],
|
||||||
|
[', sun, ', 1.1],
|
||||||
|
['sky', 1.4641000000000006],
|
||||||
|
['.', 1.1]]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
res = []
|
res = []
|
||||||
|
@ -206,4 +232,19 @@ def parse_prompt_attention(text):
|
||||||
if len(res) == 0:
|
if len(res) == 0:
|
||||||
res = [["", 1.0]]
|
res = [["", 1.0]]
|
||||||
|
|
||||||
|
# merge runs of identical weights
|
||||||
|
i = 0
|
||||||
|
while i + 1 < len(res):
|
||||||
|
if res[i][1] == res[i + 1][1]:
|
||||||
|
res[i][0] += res[i + 1][0]
|
||||||
|
res.pop(i + 1)
|
||||||
|
else:
|
||||||
|
i += 1
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
|
||||||
|
else:
|
||||||
|
import torch # doctest faster
|
||||||
|
|
Loading…
Reference in a new issue