Made dummy latents smaller. Minor code cleanups
This commit is contained in:
parent
aa7ff2a197
commit
92a17a7a4a
2 changed files with 8 additions and 5 deletions
|
@ -557,7 +557,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||||
else:
|
else:
|
||||||
# Dummy zero conditioning if we're not using inpainting model.
|
# Dummy zero conditioning if we're not using inpainting model.
|
||||||
# Still takes up a bit of memory, but no encoder call.
|
# Still takes up a bit of memory, but no encoder call.
|
||||||
image_conditioning = torch.zeros(x.shape[0], 5, x.shape[-2], x.shape[-1], dtype=x.dtype, device=x.device)
|
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
|
||||||
|
image_conditioning = torch.zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
|
||||||
|
|
||||||
return image_conditioning
|
return image_conditioning
|
||||||
|
|
||||||
|
@ -759,7 +760,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
|
self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
|
||||||
else:
|
else:
|
||||||
self.image_conditioning = torch.zeros(
|
self.image_conditioning = torch.zeros(
|
||||||
self.init_latent.shape[0], 5, self.init_latent.shape[-2], self.init_latent.shape[-1],
|
self.init_latent.shape[0], 5, 1, 1,
|
||||||
dtype=self.init_latent.dtype,
|
dtype=self.init_latent.dtype,
|
||||||
device=self.init_latent.device
|
device=self.init_latent.device
|
||||||
)
|
)
|
||||||
|
|
|
@ -138,7 +138,7 @@ class VanillaStableDiffusionSampler:
|
||||||
if self.stop_at is not None and self.step > self.stop_at:
|
if self.stop_at is not None and self.step > self.stop_at:
|
||||||
raise InterruptedException
|
raise InterruptedException
|
||||||
|
|
||||||
# Have to unwrap the inpainting conditioning here to perform pre-preocessing
|
# Have to unwrap the inpainting conditioning here to perform pre-processing
|
||||||
image_conditioning = None
|
image_conditioning = None
|
||||||
if isinstance(cond, dict):
|
if isinstance(cond, dict):
|
||||||
image_conditioning = cond["c_concat"][0]
|
image_conditioning = cond["c_concat"][0]
|
||||||
|
@ -165,6 +165,8 @@ class VanillaStableDiffusionSampler:
|
||||||
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
|
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
|
||||||
x_dec = img_orig * self.mask + self.nmask * x_dec
|
x_dec = img_orig * self.mask + self.nmask * x_dec
|
||||||
|
|
||||||
|
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
|
||||||
|
# Note that they need to be lists because it just concatenates them later.
|
||||||
if image_conditioning is not None:
|
if image_conditioning is not None:
|
||||||
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
|
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
|
||||||
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
|
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
|
||||||
|
|
Loading…
Reference in a new issue