make swinir actually useful
This commit is contained in:
parent
7267b7d2d9
commit
948eff4b3c
1 changed files with 23 additions and 5 deletions
|
@ -12,7 +12,13 @@ import modules.images
|
|||
from modules.shared import cmd_opts, opts, device
|
||||
from modules.swinir_arch import SwinIR as net
|
||||
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
||||
def load_model(task = "realsr", large_model = True, model_path=next(os.listdir(cmd_opts.esrgan_models_path))):
|
||||
def load_model(task = "realsr", large_model = True, model_path="C:/sd/ESRGANn/4x-large.pth", scale=4):
|
||||
|
||||
try:
|
||||
modules.shared.sd_upscalers.append(UpscalerSwin("McSwinnySwin"))
|
||||
except Exception:
|
||||
print(f"Error loading ESRGAN model", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
if not large_model:
|
||||
# use 'nearest+conv' to avoid block artifacts
|
||||
model = net(upscale=scale, in_chans=3, img_size=64, window_size=8,
|
||||
|
@ -26,12 +32,16 @@ def load_model(task = "realsr", large_model = True, model_path=next(os.listdir(c
|
|||
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
|
||||
|
||||
pretrained_model = torch.load(model_path)
|
||||
model.load_state_dict(pretrained_model, strict=True)
|
||||
model.load_state_dict(pretrained_model["params_ema"], strict=True)
|
||||
|
||||
return model.half().to(device)
|
||||
|
||||
def upscale(img, tile=opts.ESRGAN_tile, tile_overlap=opts.ESRGAN_tile_overlap, window_size = 8, scale = 4):
|
||||
img = cv2.imread(img, cv2.IMREAD_COLOR).astype(np.float16) / 255.
|
||||
img = np.array(img)
|
||||
img = img[:, :, ::-1]
|
||||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = img.unsqueeze(0).to(device)
|
||||
model = load_model()
|
||||
with torch.no_grad(), precision_scope("cuda"):
|
||||
_, _, h_old, w_old = img.size()
|
||||
|
@ -45,7 +55,7 @@ def upscale(img, tile=opts.ESRGAN_tile, tile_overlap=opts.ESRGAN_tile_overlap, w
|
|||
if output.ndim == 3:
|
||||
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
|
||||
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
||||
return output
|
||||
return Image.fromarray(output, 'RGB')
|
||||
|
||||
|
||||
def inference(img, model, tile, tile_overlap, window_size, scale):
|
||||
|
@ -72,3 +82,11 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
|
|||
output = E.div_(W)
|
||||
|
||||
return output
|
||||
|
||||
class UpscalerSwin(modules.images.Upscaler):
|
||||
def __init__(self, title):
|
||||
self.name = title
|
||||
|
||||
def do_upscale(self, img):
|
||||
img = upscale(img)
|
||||
return img
|
Loading…
Reference in a new issue