From 1cd3ed7def40198f46d30f74dd37d2906ebdbaa6 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 14:28:56 +0300 Subject: [PATCH 1/2] fix for extensions without style.css --- modules/ui.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/modules/ui.py b/modules/ui.py index 29986124..d8d52db1 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1639,6 +1639,9 @@ Requested path was: {f} css = "" for cssfile in modules.scripts.list_files_with_name("style.css"): + if not os.path.isfile(cssfile): + continue + with open(cssfile, "r", encoding="utf8") as file: css += file.read() + "\n" From 7fd90128eb6d1820045bfe2c2c1269661023a712 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 14:48:43 +0300 Subject: [PATCH 2/2] added a guard for hypernet training that will stop early if weights are getting no gradients --- modules/hypernetworks/hypernetwork.py | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 47d91ea5..46039a49 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -310,6 +310,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) + steps_without_grad = 0 + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, entries in pbar: hypernetwork.step = i + ititial_step @@ -332,8 +334,17 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log losses[hypernetwork.step % losses.shape[0]] = loss.item() optimizer.zero_grad() + weights[0].grad = None loss.backward() + + if weights[0].grad is None: + steps_without_grad += 1 + else: + steps_without_grad = 0 + assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue' + optimizer.step() + mean_loss = losses.mean() if torch.isnan(mean_loss): raise RuntimeError("Loss diverged.")