memory optimization for CLIP interrogator
changed default cfg_scale to a higher value
This commit is contained in:
parent
ab0a79cdf4
commit
9bb20be090
4 changed files with 36 additions and 7 deletions
|
@ -11,7 +11,7 @@ from torchvision import transforms
|
||||||
from torchvision.transforms.functional import InterpolationMode
|
from torchvision.transforms.functional import InterpolationMode
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
from modules import devices, paths
|
from modules import devices, paths, lowvram
|
||||||
|
|
||||||
blip_image_eval_size = 384
|
blip_image_eval_size = 384
|
||||||
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
|
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
|
||||||
|
@ -75,19 +75,28 @@ class InterrogateModels:
|
||||||
|
|
||||||
self.dtype = next(self.clip_model.parameters()).dtype
|
self.dtype = next(self.clip_model.parameters()).dtype
|
||||||
|
|
||||||
def unload(self):
|
def send_clip_to_ram(self):
|
||||||
if not shared.opts.interrogate_keep_models_in_memory:
|
if not shared.opts.interrogate_keep_models_in_memory:
|
||||||
if self.clip_model is not None:
|
if self.clip_model is not None:
|
||||||
self.clip_model = self.clip_model.to(devices.cpu)
|
self.clip_model = self.clip_model.to(devices.cpu)
|
||||||
|
|
||||||
|
def send_blip_to_ram(self):
|
||||||
|
if not shared.opts.interrogate_keep_models_in_memory:
|
||||||
if self.blip_model is not None:
|
if self.blip_model is not None:
|
||||||
self.blip_model = self.blip_model.to(devices.cpu)
|
self.blip_model = self.blip_model.to(devices.cpu)
|
||||||
|
|
||||||
devices.torch_gc()
|
def unload(self):
|
||||||
|
self.send_clip_to_ram()
|
||||||
|
self.send_blip_to_ram()
|
||||||
|
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
def rank(self, image_features, text_array, top_count=1):
|
def rank(self, image_features, text_array, top_count=1):
|
||||||
import clip
|
import clip
|
||||||
|
|
||||||
|
if shared.opts.interrogate_clip_dict_limit != 0:
|
||||||
|
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
|
||||||
|
|
||||||
top_count = min(top_count, len(text_array))
|
top_count = min(top_count, len(text_array))
|
||||||
text_tokens = clip.tokenize([text for text in text_array]).to(shared.device)
|
text_tokens = clip.tokenize([text for text in text_array]).to(shared.device)
|
||||||
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
|
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
|
||||||
|
@ -117,16 +126,24 @@ class InterrogateModels:
|
||||||
res = None
|
res = None
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|
||||||
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
|
lowvram.send_everything_to_cpu()
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
self.load()
|
self.load()
|
||||||
|
|
||||||
caption = self.generate_caption(pil_image)
|
caption = self.generate_caption(pil_image)
|
||||||
|
self.send_blip_to_ram()
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
res = caption
|
res = caption
|
||||||
|
|
||||||
images = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
|
cilp_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
|
||||||
|
|
||||||
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
|
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
|
||||||
with torch.no_grad(), precision_scope("cuda"):
|
with torch.no_grad(), precision_scope("cuda"):
|
||||||
image_features = self.clip_model.encode_image(images).type(self.dtype)
|
image_features = self.clip_model.encode_image(cilp_image).type(self.dtype)
|
||||||
|
|
||||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||||
|
|
||||||
|
@ -146,4 +163,5 @@ class InterrogateModels:
|
||||||
|
|
||||||
self.unload()
|
self.unload()
|
||||||
|
|
||||||
|
res += "<error>"
|
||||||
return res
|
return res
|
||||||
|
|
|
@ -5,6 +5,16 @@ module_in_gpu = None
|
||||||
cpu = torch.device("cpu")
|
cpu = torch.device("cpu")
|
||||||
device = gpu = get_optimal_device()
|
device = gpu = get_optimal_device()
|
||||||
|
|
||||||
|
|
||||||
|
def send_everything_to_cpu():
|
||||||
|
global module_in_gpu
|
||||||
|
|
||||||
|
if module_in_gpu is not None:
|
||||||
|
module_in_gpu.to(cpu)
|
||||||
|
|
||||||
|
module_in_gpu = None
|
||||||
|
|
||||||
|
|
||||||
def setup_for_low_vram(sd_model, use_medvram):
|
def setup_for_low_vram(sd_model, use_medvram):
|
||||||
parents = {}
|
parents = {}
|
||||||
|
|
||||||
|
|
|
@ -132,6 +132,7 @@ class Options:
|
||||||
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
|
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
|
||||||
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum descripton length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
|
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum descripton length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
|
||||||
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum descripton length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
|
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum descripton length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
|
||||||
|
"interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"),
|
||||||
}
|
}
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
|
|
@ -270,7 +270,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
|
||||||
batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1)
|
batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1)
|
||||||
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
|
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
|
||||||
|
|
||||||
cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.0)
|
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0)
|
||||||
|
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
||||||
|
@ -413,7 +413,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
|
||||||
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
|
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
|
||||||
|
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.0)
|
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0)
|
||||||
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75)
|
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75)
|
||||||
denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1, visible=False)
|
denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1, visible=False)
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue