resolve conflicts
This commit is contained in:
parent
20194fd975
commit
9d96d7d0a0
1 changed files with 38 additions and 6 deletions
|
@ -21,6 +21,7 @@ from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_norm
|
|||
from collections import defaultdict, deque
|
||||
from statistics import stdev, mean
|
||||
|
||||
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
|
||||
|
||||
class HypernetworkModule(torch.nn.Module):
|
||||
multiplier = 1.0
|
||||
|
@ -139,6 +140,8 @@ class Hypernetwork:
|
|||
self.weight_init = weight_init
|
||||
self.add_layer_norm = add_layer_norm
|
||||
self.use_dropout = use_dropout
|
||||
self.optimizer_name = None
|
||||
self.optimizer_state_dict = None
|
||||
|
||||
for size in enable_sizes or []:
|
||||
self.layers[size] = (
|
||||
|
@ -171,6 +174,10 @@ class Hypernetwork:
|
|||
state_dict['use_dropout'] = self.use_dropout
|
||||
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
||||
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
||||
if self.optimizer_name is not None:
|
||||
state_dict['optimizer_name'] = self.optimizer_name
|
||||
if self.optimizer_state_dict:
|
||||
state_dict['optimizer_state_dict'] = self.optimizer_state_dict
|
||||
|
||||
torch.save(state_dict, filename)
|
||||
|
||||
|
@ -190,7 +197,14 @@ class Hypernetwork:
|
|||
self.add_layer_norm = state_dict.get('is_layer_norm', False)
|
||||
print(f"Layer norm is set to {self.add_layer_norm}")
|
||||
self.use_dropout = state_dict.get('use_dropout', False)
|
||||
print(f"Dropout usage is set to {self.use_dropout}" )
|
||||
print(f"Dropout usage is set to {self.use_dropout}")
|
||||
self.optimizer_name = state_dict.get('optimizer_name', 'AdamW')
|
||||
print(f"Optimizer name is {self.optimizer_name}")
|
||||
self.optimizer_state_dict = state_dict.get('optimizer_state_dict', None)
|
||||
if self.optimizer_state_dict:
|
||||
print("Loaded existing optimizer from checkpoint")
|
||||
else:
|
||||
print("No saved optimizer exists in checkpoint")
|
||||
|
||||
for size, sd in state_dict.items():
|
||||
if type(size) == int:
|
||||
|
@ -392,8 +406,19 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
weights = hypernetwork.weights()
|
||||
for weight in weights:
|
||||
weight.requires_grad = True
|
||||
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
|
||||
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
||||
# Here we use optimizer from saved HN, or we can specify as UI option.
|
||||
if (optimizer_name := hypernetwork.optimizer_name) in optimizer_dict:
|
||||
optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
|
||||
else:
|
||||
print(f"Optimizer type {optimizer_name} is not defined!")
|
||||
optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
|
||||
optimizer_name = 'AdamW'
|
||||
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
|
||||
try:
|
||||
optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
|
||||
except RuntimeError as e:
|
||||
print("Cannot resume from saved optimizer!")
|
||||
print(e)
|
||||
|
||||
steps_without_grad = 0
|
||||
|
||||
|
@ -455,8 +480,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
# Before saving, change name to match current checkpoint.
|
||||
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
|
||||
hypernetwork.optimizer_name = optimizer_name
|
||||
if shared.opts.save_optimizer_state:
|
||||
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
||||
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
|
||||
|
||||
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
|
||||
"loss": f"{previous_mean_loss:.7f}",
|
||||
"learn_rate": scheduler.learn_rate
|
||||
|
@ -514,14 +542,18 @@ Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
|
|||
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||
</p>
|
||||
"""
|
||||
|
||||
report_statistics(loss_dict)
|
||||
|
||||
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||
hypernetwork.optimizer_name = optimizer_name
|
||||
if shared.opts.save_optimizer_state:
|
||||
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
||||
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
|
||||
|
||||
del optimizer
|
||||
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||
return hypernetwork, filename
|
||||
|
||||
|
||||
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
|
||||
old_hypernetwork_name = hypernetwork.name
|
||||
old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
|
||||
|
|
Loading…
Reference in a new issue