diff --git a/modules/api/processing.py b/modules/api/processing.py new file mode 100644 index 00000000..459a8f49 --- /dev/null +++ b/modules/api/processing.py @@ -0,0 +1,99 @@ +from inflection import underscore +from typing import Any, Dict, Optional +from pydantic import BaseModel, Field, create_model +from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images +import inspect + + +class ModelDef(BaseModel): + """Assistance Class for Pydantic Dynamic Model Generation""" + + field: str + field_alias: str + field_type: Any + field_value: Any + + +class pydanticModelGenerator: + """ + Takes source_data:Dict ( a single instance example of something like a JSON node) and self generates a pythonic data model with Alias to original source field names. This makes it easy to popuate or export to other systems yet handle the data in a pythonic way. + Being a pydantic datamodel all the richness of pydantic data validation is available and these models can easily be used in FastAPI and or a ORM + + It does not process full JSON data structures but takes simple JSON document with basic elements + + Provide a model_name, an example of JSON data and a dict of type overrides + + Example: + + source_data = {'Name': '48 Rainbow Rd', + 'GroupAddressStyle': 'ThreeLevel', + 'LastModified': '2020-12-21T07:02:51.2400232Z', + 'ProjectStart': '2020-12-03T07:36:03.324856Z', + 'Comment': '', + 'CompletionStatus': 'Editing', + 'LastUsedPuid': '955', + 'Guid': '0c85957b-c2ae-4985-9752-b300ab385b36'} + + source_overrides = {'Guid':{'type':uuid.UUID}, + 'LastModified':{'type':datetime }, + 'ProjectStart':{'type':datetime }, + } + source_optionals = {"Comment":True} + + #create Model + model_Project=pydanticModelGenerator( + model_name="Project", + source_data=source_data, + overrides=source_overrides, + optionals=source_optionals).generate_model() + + #create instance using DynamicModel + project_instance=model_Project(**project_info) + + """ + + def __init__( + self, + model_name: str = None, + source_data: str = None, + params: Dict = {}, + overrides: Dict = {}, + optionals: Dict = {}, + ): + def field_type_generator(k, v, overrides, optionals): + print(k, v) + field_type = str if not overrides.get(k) else overrides[k]["type"] + if v is None: + field_type = Any + else: + field_type = type(v) + + return Optional[field_type] + + self._model_name = model_name + self._json_data = source_data + self._model_def = [ + ModelDef( + field=underscore(k), + field_alias=k, + field_type=field_type_generator(k, v, overrides, optionals), + field_value=v + ) + for (k,v) in source_data.items() if k in params + ] + + def generate_model(self): + """ + Creates a pydantic BaseModel + from the json and overrides provided at initialization + """ + fields = { + d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def + } + DynamicModel = create_model(self._model_name, **fields) + DynamicModel.__config__.allow_population_by_field_name = True + return DynamicModel + +StableDiffusionProcessingAPI = pydanticModelGenerator("StableDiffusionProcessing", + StableDiffusionProcessing().__dict__, + inspect.signature(StableDiffusionProcessing.__init__).parameters).generate_model() \ No newline at end of file