diff --git a/modules/img2img.py b/modules/img2img.py index e6707f96..600a5172 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -55,7 +55,10 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index initial_seed = None initial_info = None + state.job_count = n_iter + for i in range(n_iter): + p.n_iter = 1 p.batch_size = 1 p.do_not_save_grid = True @@ -72,6 +75,8 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index p.denoising_strength = max(p.denoising_strength * 0.95, 0.1) history.append(processed.images[0]) + state.nextjob() + grid = images.image_grid(history, batch_size, rows=1) images.save_image(grid, p.outpath_grids, "grid", initial_seed, prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename) @@ -103,6 +108,8 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index batch_count = math.ceil(len(work) / p.batch_size) print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} in a total of {batch_count} batches.") + state.job_count = batch_count + for i in range(batch_count): p.init_images = work[i*p.batch_size:(i+1)*p.batch_size] @@ -116,6 +123,8 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index p.seed = processed.seed + 1 work_results += processed.images + state.nextjob() + image_index = 0 for y, h, row in grid.tiles: for tiledata in row: diff --git a/modules/processing.py b/modules/processing.py index c0c1adb7..1351579b 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -153,6 +153,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed: with torch.no_grad(), precision_scope("cuda"), ema_scope(): p.init() + state.job_count = p.n_iter + for n in range(p.n_iter): if state.interrupted: break @@ -207,6 +209,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed: output_images.append(image) + state.nextjob() + unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple if not p.do_not_save_grid and not unwanted_grid_because_of_img_count: return_grid = opts.return_grid diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 6f028f5f..896e8b3f 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -1,10 +1,12 @@ from collections import namedtuple + +import ldm.models.diffusion.ddim import torch import tqdm import k_diffusion.sampling -from ldm.models.diffusion.ddim import DDIMSampler -from ldm.models.diffusion.plms import PLMSSampler +import ldm.models.diffusion.ddim +import ldm.models.diffusion.plms from modules.shared import opts, cmd_opts, state import modules.shared as shared @@ -29,8 +31,8 @@ samplers_data_k_diffusion = [ samplers = [ *samplers_data_k_diffusion, - SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(DDIMSampler, model), []), - SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(PLMSSampler, model), []), + SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []), + SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []), ] samplers_for_img2img = [x for x in samplers if x.name != 'PLMS'] @@ -43,6 +45,23 @@ def p_sample_ddim_hook(sampler_wrapper, x_dec, cond, ts, *args, **kwargs): return sampler_wrapper.orig_p_sample_ddim(x_dec, cond, ts, *args, **kwargs) +def extended_tdqm(sequence, *args, desc=None, **kwargs): + state.sampling_steps = len(sequence) + state.sampling_step = 0 + + for x in tqdm.tqdm(sequence, *args, desc=state.job, **kwargs): + if state.interrupted: + break + + yield x + + state.sampling_step += 1 + + +ldm.models.diffusion.ddim.tqdm = lambda *args, desc=None, **kwargs: extended_tdqm(*args, desc=desc, **kwargs) +ldm.models.diffusion.plms.tqdm = lambda *args, desc=None, **kwargs: extended_tdqm(*args, desc=desc, **kwargs) + + class VanillaStableDiffusionSampler: def __init__(self, constructor, sd_model): self.sampler = constructor(sd_model) @@ -102,13 +121,18 @@ class CFGDenoiser(torch.nn.Module): return denoised -def extended_trange(*args, **kwargs): - for x in tqdm.trange(*args, desc=state.job, **kwargs): +def extended_trange(count, *args, **kwargs): + state.sampling_steps = count + state.sampling_step = 0 + + for x in tqdm.trange(count, *args, desc=state.job, **kwargs): if state.interrupted: break yield x + state.sampling_step += 1 + class KDiffusionSampler: def __init__(self, funcname, sd_model): diff --git a/modules/shared.py b/modules/shared.py index 4e36df37..53861daf 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -42,10 +42,18 @@ batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram o class State: interrupted = False job = "" + job_no = 0 + job_count = 0 + sampling_step = 0 + sampling_steps = 0 def interrupt(self): self.interrupted = True + def nextjob(self): + self.job_no += 1 + self.sampling_step = 0 + state = State() artist_db = modules.artists.ArtistsDatabase(os.path.join(script_path, 'artists.csv')) @@ -89,6 +97,7 @@ class Options: "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscaling. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), "upscale_at_full_resolution_padding": OptionInfo(16, "Inpainting at full resolution: padding, in pixels, for the masked region.", gr.Slider, {"minimum": 0, "maximum": 128, "step": 4}), + "show_progressbar": OptionInfo(True, "Show progressbar"), } def __init__(self): diff --git a/modules/ui.py b/modules/ui.py index aa5a61b7..a9e4fd00 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -48,7 +48,6 @@ css_hide_progressbar = """ .meta-text { display:none!important; } """ - def plaintext_to_html(text): text = "".join([f"
{html.escape(x)}
\n" for x in text.split('\n')]) return text @@ -134,6 +133,24 @@ def wrap_gradio_call(func): return f +def check_progress_call(): + if not opts.show_progressbar: + return "" + + if shared.state.job_count == 0: + return "" + + progress = shared.state.job_no / shared.state.job_count + if shared.state.sampling_steps > 0: + progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps + + progress = min(progress, 1) + + progressbar = f"""{progressbar}
" + + def roll_artist(prompt): allowed_cats = set([x for x in shared.artist_db.categories() if len(opts.random_artist_categories)==0 or x in opts.random_artist_categories]) artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats]) @@ -154,8 +171,9 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): with gr.Row(): prompt = gr.Textbox(label="Prompt", elem_id="txt2img_prompt", show_label=False, placeholder="Prompt", lines=1) negative_prompt = gr.Textbox(label="Negative prompt", elem_id="txt2img_negative_prompt", show_label=False, placeholder="Negative prompt", lines=1, visible=False) - roll = gr.Button('Roll', elem_id="txt2img_roll", visible=len(shared.artist_db.artists)>0) + roll = gr.Button('Roll', elem_id="txt2img_roll", visible=len(shared.artist_db.artists) > 0) submit = gr.Button('Generate', elem_id="txt2img_generate", variant='primary') + check_progress = gr.Button('Check progress', elem_id="check_progress", visible=False) with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): @@ -185,6 +203,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): with gr.Group(): txt2img_gallery = gr.Gallery(label='Output', elem_id='txt2img_gallery') + with gr.Group(): with gr.Row(): save = gr.Button('Save') @@ -193,12 +212,16 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): send_to_extras = gr.Button('Send to extras') interrupt = gr.Button('Interrupt') + progressbar = gr.HTML(elem_id="progressbar") + with gr.Group(): html_info = gr.HTML() generation_info = gr.Textbox(visible=False) + txt2img_args = dict( fn=txt2img, + _js="submit", inputs=[ prompt, negative_prompt, @@ -223,6 +246,13 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): prompt.submit(**txt2img_args) submit.click(**txt2img_args) + check_progress.click( + fn=check_progress_call, + inputs=[], + outputs=[progressbar], + ) + + interrupt.click( fn=lambda: shared.state.interrupt(), inputs=[], @@ -252,10 +282,12 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): ] ) + with gr.Blocks(analytics_enabled=False) as img2img_interface: with gr.Row(): prompt = gr.Textbox(label="Prompt", elem_id="img2img_prompt", show_label=False, placeholder="Prompt", lines=1) submit = gr.Button('Generate', elem_id="img2img_generate", variant='primary') + check_progress = gr.Button('Check progress', elem_id="check_progress", visible=False) with gr.Row().style(equal_height=False): @@ -310,6 +342,8 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): save = gr.Button('Save') img2img_send_to_extras = gr.Button('Send to extras') + progressbar = gr.HTML(elem_id="progressbar") + with gr.Group(): html_info = gr.HTML() generation_info = gr.Textbox(visible=False) @@ -352,6 +386,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): img2img_args = dict( fn=img2img, + _js="submit", inputs=[ prompt, init_img, @@ -386,6 +421,12 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): prompt.submit(**img2img_args) submit.click(**img2img_args) + check_progress.click( + fn=check_progress_call, + inputs=[], + outputs=[progressbar], + ) + interrupt.click( fn=lambda: shared.state.interrupt(), inputs=[], diff --git a/script.js b/script.js index 7aa07e56..ff301e49 100644 --- a/script.js +++ b/script.js @@ -51,6 +51,8 @@ function gradioApp(){ return document.getElementsByTagName('gradio-app')[0].shadowRoot; } +global_progressbar = null + function addTitles(root){ root.querySelectorAll('span, button, select').forEach(function(span){ tooltip = titles[span.textContent]; @@ -71,6 +73,17 @@ function addTitles(root){ select.title = titles[select.value] || ""; } }) + + progressbar = root.getElementById('progressbar') + if(progressbar!= null && progressbar != global_progressbar){ + global_progressbar = progressbar + + var mutationObserver = new MutationObserver(function(m){ + window.setTimeout(requestProgress, 500) + }); + mutationObserver.observe( progressbar, { childList:true, subtree:true }) + } + } document.addEventListener("DOMContentLoaded", function() { @@ -78,7 +91,6 @@ document.addEventListener("DOMContentLoaded", function() { addTitles(gradioApp()); }); mutationObserver.observe( gradioApp(), { childList:true, subtree:true }) - }); function selected_gallery_index(){ @@ -105,3 +117,22 @@ function extract_image_from_gallery(gallery){ return gallery[index]; } + + +function requestProgress(){ + btn = gradioApp().getElementById("check_progress"); + if(btn==null) return; + + btn.click(); +} + +function submit(){ + window.setTimeout(requestProgress, 500) + + res = [] + for(var i=0;i