Merge pull request #3 from 920232796/master

fix device support for mps
update the support for SD2.0
This commit is contained in:
Zac Liu 2022-12-06 09:17:57 +08:00 committed by GitHub
commit a25dfebeed
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 75 additions and 4 deletions

View file

@ -38,8 +38,8 @@ def get_optimal_device():
if torch.cuda.is_available():
return torch.device(get_cuda_device_string())
# if has_mps():
# return torch.device("mps")
if has_mps():
return torch.device("mps")
return cpu

View file

@ -29,7 +29,7 @@ diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.At
# new memory efficient cross attention blocks do not support hypernets and we already
# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
# ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
# silence new console spam from SD2
ldm.modules.attention.print = lambda *args: None

View file

@ -110,7 +110,11 @@ restricted_opts = {
from omegaconf import OmegaConf
config = OmegaConf.load(f"{cmd_opts.config}")
# XLMR-Large
text_model_name = config.model.params.cond_stage_config.params.name
try:
text_model_name = config.model.params.cond_stage_config.params.name
except :
text_model_name = "stable_diffusion"
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access

67
v2-inference.yaml Normal file
View file

@ -0,0 +1,67 @@
model:
base_learning_rate: 1.0e-4
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False # we set this to false because this is an inference only config
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: True
use_fp16: True
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
#attn_type: "vanilla-xformers"
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
freeze: True
layer: "penultimate"