Merge branch 'master' into master

This commit is contained in:
不会画画的中医不是好程序员 2022-10-11 21:03:41 +08:00 committed by GitHub
commit a36dea9596
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 130 additions and 64 deletions

View file

@ -2,7 +2,7 @@
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
labels: 'suggestion'
assignees: ''
---

View file

@ -16,7 +16,7 @@ contextMenuInit = function(){
oldMenu.remove()
}
let tabButton = gradioApp().querySelector('button')
let tabButton = uiCurrentTab
let baseStyle = window.getComputedStyle(tabButton)
const contextMenu = document.createElement('nav')
@ -123,44 +123,53 @@ contextMenuInit = function(){
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
}
initResponse = contextMenuInit()
appendContextMenuOption = initResponse[0]
removeContextMenuOption = initResponse[1]
addContextMenuEventListener = initResponse[2]
initResponse = contextMenuInit();
appendContextMenuOption = initResponse[0];
removeContextMenuOption = initResponse[1];
addContextMenuEventListener = initResponse[2];
//Start example Context Menu Items
generateOnRepeatId = appendContextMenuOption('#txt2img_generate','Generate forever',function(){
let genbutton = gradioApp().querySelector('#txt2img_generate');
let interruptbutton = gradioApp().querySelector('#txt2img_interrupt');
if(!interruptbutton.offsetParent){
genbutton.click();
}
clearInterval(window.generateOnRepeatInterval)
window.generateOnRepeatInterval = setInterval(function(){
(function(){
//Start example Context Menu Items
let generateOnRepeat = function(genbuttonid,interruptbuttonid){
let genbutton = gradioApp().querySelector(genbuttonid);
let interruptbutton = gradioApp().querySelector(interruptbuttonid);
if(!interruptbutton.offsetParent){
genbutton.click();
}
},
500)}
)
cancelGenerateForever = function(){
clearInterval(window.generateOnRepeatInterval)
}
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#roll','Roll three',
function(){
let rollbutton = gradioApp().querySelector('#roll');
setTimeout(function(){rollbutton.click()},100)
setTimeout(function(){rollbutton.click()},200)
setTimeout(function(){rollbutton.click()},300)
clearInterval(window.generateOnRepeatInterval)
window.generateOnRepeatInterval = setInterval(function(){
if(!interruptbutton.offsetParent){
genbutton.click();
}
},
500)
}
)
appendContextMenuOption('#txt2img_generate','Generate forever',function(){
generateOnRepeat('#txt2img_generate','#txt2img_interrupt');
})
appendContextMenuOption('#img2img_generate','Generate forever',function(){
generateOnRepeat('#img2img_generate','#img2img_interrupt');
})
let cancelGenerateForever = function(){
clearInterval(window.generateOnRepeatInterval)
}
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#roll','Roll three',
function(){
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
setTimeout(function(){rollbutton.click()},100)
setTimeout(function(){rollbutton.click()},200)
setTimeout(function(){rollbutton.click()},300)
}
)
})();
//End example Context Menu Items
onUiUpdate(function(){

View file

@ -104,6 +104,7 @@ def prepare_enviroment():
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
xformers = '--xformers' in args
deepdanbooru = '--deepdanbooru' in args
ngrok = '--ngrok' in args
try:
commit = run(f"{git} rev-parse HEAD").strip()
@ -134,6 +135,9 @@ def prepare_enviroment():
if not is_installed("deepdanbooru") and deepdanbooru:
run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
if not is_installed("pyngrok") and ngrok:
run_pip("install pyngrok", "ngrok")
os.makedirs(dir_repos, exist_ok=True)
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)

View file

@ -6,14 +6,14 @@ import gradio as gr
import modules.textual_inversion.textual_inversion
import modules.textual_inversion.preprocess
from modules import sd_hijack, shared
from modules.hypernetwork import hypernetwork
from modules.hypernetworks import hypernetwork
def create_hypernetwork(name):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name)
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name)
hypernet.save(fn)
shared.reload_hypernetworks()
@ -28,7 +28,7 @@ def train_hypernetwork(*args):
try:
sd_hijack.undo_optimizations()
hypernetwork, filename = modules.hypernetwork.hypernetwork.train_hypernetwork(*args)
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.

15
modules/ngrok.py Normal file
View file

@ -0,0 +1,15 @@
from pyngrok import ngrok, conf, exception
def connect(token, port):
if token == None:
token = 'None'
conf.get_default().auth_token = token
try:
public_url = ngrok.connect(port).public_url
except exception.PyngrokNgrokError:
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
else:
print(f'ngrok connected to localhost:{port}! URL: {public_url}\n'
'You can use this link after the launch is complete.')

View file

@ -37,7 +37,7 @@ def apply_optimizations():
def undo_optimizations():
from modules.hypernetwork import hypernetwork
from modules.hypernetworks import hypernetwork
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity

View file

@ -9,7 +9,7 @@ from ldm.util import default
from einops import rearrange
from modules import shared
from modules.hypernetwork import hypernetwork
from modules.hypernetworks import hypernetwork
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:

View file

@ -57,7 +57,7 @@ def set_samplers():
global samplers, samplers_for_img2img
hidden = set(opts.hide_samplers)
hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive'])
hidden_img2img = set(opts.hide_samplers + ['PLMS'])
samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
@ -365,16 +365,26 @@ class KDiffusionSampler:
else:
sigmas = self.model_wrap.get_sigmas(steps)
noise = noise * sigmas[steps - t_enc - 1]
xi = x + noise
extra_params_kwargs = self.initialize(p)
sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
return self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
steps = steps or p.steps

View file

@ -14,7 +14,7 @@ import modules.sd_models
import modules.styles
import modules.devices as devices
from modules import sd_samplers
from modules.hypernetwork import hypernetwork
from modules.hypernetworks import hypernetwork
from modules.paths import models_path, script_path, sd_path
sd_model_file = os.path.join(script_path, 'model.ckpt')
@ -38,6 +38,7 @@ parser.add_argument("--always-batch-cond-uncond", action='store_true', help="dis
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))

View file

@ -52,6 +52,11 @@ if not cmd_opts.share and not cmd_opts.listen:
gradio.utils.version_check = lambda: None
gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
if cmd_opts.ngrok != None:
import modules.ngrok as ngrok
print('ngrok authtoken detected, trying to connect...')
ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860)
def gr_show(visible=True):
return {"visible": visible, "__type__": "update"}
@ -430,7 +435,10 @@ def create_toprow(is_img2img):
with gr.Row():
with gr.Column(scale=8):
negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2)
with gr.Row():
negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2)
with gr.Column(scale=1, elem_id="roll_col"):
sh = gr.Button(elem_id="sh", visible=True)
with gr.Column(scale=1, elem_id="style_neg_col"):
prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1)
@ -550,16 +558,15 @@ def create_ui(wrap_gradio_gpu_call):
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
open_txt2img_folder = gr.Button(folder_symbol, elem_id=button_id)
with gr.Row():
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
with gr.Row():
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
with gr.Group():
html_info = gr.HTML()
generation_info = gr.Textbox(visible=False)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
@ -740,17 +747,16 @@ def create_ui(wrap_gradio_gpu_call):
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
open_img2img_folder = gr.Button(folder_symbol, elem_id=button_id)
with gr.Row():
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
with gr.Row():
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
with gr.Group():
html_info = gr.HTML()
generation_info = gr.Textbox(visible=False)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
@ -1106,7 +1112,7 @@ def create_ui(wrap_gradio_gpu_call):
)
create_hypernetwork.click(
fn=modules.hypernetwork.ui.create_hypernetwork,
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
new_hypernetwork_name,
],
@ -1159,7 +1165,7 @@ def create_ui(wrap_gradio_gpu_call):
)
train_hypernetwork.click(
fn=wrap_gradio_gpu_call(modules.hypernetwork.ui.train_hypernetwork, extra_outputs=[gr.update()]),
fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
inputs=[
train_hypernetwork_name,

View file

@ -11,7 +11,7 @@ import modules.scripts as scripts
import gradio as gr
from modules import images
from modules.hypernetwork import hypernetwork
from modules.hypernetworks import hypernetwork
from modules.processing import process_images, Processed, get_correct_sampler
from modules.shared import opts, cmd_opts, state
import modules.shared as shared

View file

@ -2,6 +2,27 @@
max-width: 100%;
}
#txt2img_token_counter {
height: 0px;
}
#img2img_token_counter {
height: 0px;
}
#sh{
min-width: 2em;
min-height: 2em;
max-width: 2em;
max-height: 2em;
flex-grow: 0;
padding-left: 0.25em;
padding-right: 0.25em;
margin: 0.1em 0;
opacity: 0%;
cursor: default;
}
.output-html p {margin: 0 0.5em;}
.row > *,

View file

@ -29,7 +29,7 @@ from modules import devices
from modules import modelloader
from modules.paths import script_path
from modules.shared import cmd_opts
import modules.hypernetwork.hypernetwork
import modules.hypernetworks.hypernetwork
modelloader.cleanup_models()
modules.sd_models.setup_model()
@ -83,7 +83,7 @@ modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
shared.sd_model = modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
def webui():