From a7c213d0f5ebb10722629b8490a5863f9ce6c4fa Mon Sep 17 00:00:00 2001 From: Stephen Date: Fri, 21 Oct 2022 19:27:40 -0400 Subject: [PATCH] [API][Feature] - Add img2img API endpoint --- modules/api/api.py | 58 +++++++++++++++++++++++++++++++++++---- modules/api/processing.py | 11 ++++++-- modules/processing.py | 2 +- 3 files changed, 63 insertions(+), 8 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 5b0c934e..a04f2428 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -1,5 +1,5 @@ -from modules.api.processing import StableDiffusionProcessingAPI -from modules.processing import StableDiffusionProcessingTxt2Img, process_images +from modules.api.processing import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.sd_samplers import all_samplers from modules.extras import run_pnginfo import modules.shared as shared @@ -10,6 +10,7 @@ from pydantic import BaseModel, Field, Json import json import io import base64 +from PIL import Image sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) @@ -18,6 +19,11 @@ class TextToImageResponse(BaseModel): parameters: Json info: Json +class ImageToImageResponse(BaseModel): + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: Json + info: Json + class Api: def __init__(self, app, queue_lock): @@ -25,8 +31,9 @@ class Api: self.app = app self.queue_lock = queue_lock self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) + self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"]) - def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ): + def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): sampler_index = sampler_to_index(txt2imgreq.sampler_index) if sampler_index is None: @@ -54,8 +61,49 @@ class Api: - def img2imgapi(self): - raise NotImplementedError + def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): + sampler_index = sampler_to_index(img2imgreq.sampler_index) + + if sampler_index is None: + raise HTTPException(status_code=404, detail="Sampler not found") + + + init_images = img2imgreq.init_images + if init_images is None: + raise HTTPException(status_code=404, detail="Init image not found") + + + populate = img2imgreq.copy(update={ # Override __init__ params + "sd_model": shared.sd_model, + "sampler_index": sampler_index[0], + "do_not_save_samples": True, + "do_not_save_grid": True + } + ) + p = StableDiffusionProcessingImg2Img(**vars(populate)) + + imgs = [] + for img in init_images: + # if has a comma, deal with prefix + if "," in img: + img = img.split(",")[1] + # convert base64 to PIL image + img = base64.b64decode(img) + img = Image.open(io.BytesIO(img)) + imgs = [img] * p.batch_size + + p.init_images = imgs + # Override object param + with self.queue_lock: + processed = process_images(p) + + b64images = [] + for i in processed.images: + buffer = io.BytesIO() + i.save(buffer, format="png") + b64images.append(base64.b64encode(buffer.getvalue())) + + return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=json.dumps(processed.info)) def extrasapi(self): raise NotImplementedError diff --git a/modules/api/processing.py b/modules/api/processing.py index 4c541241..9f1d65c0 100644 --- a/modules/api/processing.py +++ b/modules/api/processing.py @@ -1,7 +1,8 @@ +from array import array from inflection import underscore from typing import Any, Dict, Optional from pydantic import BaseModel, Field, create_model -from modules.processing import StableDiffusionProcessingTxt2Img +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img import inspect @@ -92,8 +93,14 @@ class PydanticModelGenerator: DynamicModel.__config__.allow_mutation = True return DynamicModel -StableDiffusionProcessingAPI = PydanticModelGenerator( +StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingTxt2Img", StableDiffusionProcessingTxt2Img, [{"key": "sampler_index", "type": str, "default": "Euler"}] +).generate_model() + +StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( + "StableDiffusionProcessingImg2Img", + StableDiffusionProcessingImg2Img, + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}] ).generate_model() \ No newline at end of file diff --git a/modules/processing.py b/modules/processing.py index b1877b80..1557ed8c 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -623,7 +623,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): sampler = None - def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs): + def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: str=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs): super().__init__(**kwargs) self.init_images = init_images