Fixed non-square highres fix generation

This commit is contained in:
random_thoughtss 2022-10-19 21:46:13 -07:00
parent c418467c03
commit aa7ff2a197

View file

@ -541,10 +541,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
def create_dummy_mask(self, x): def create_dummy_mask(self, x, first_phase: bool = False):
if self.sampler.conditioning_key in {'hybrid', 'concat'}: if self.sampler.conditioning_key in {'hybrid', 'concat'}:
height = self.firstphase_height if first_phase else self.height
width = self.firstphase_width if first_phase else self.width
# The "masked-image" in this case will just be all zeros since the entire image is masked. # The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning = torch.zeros(x.shape[0], 3, self.height, self.width, device=x.device) image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning)) image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
# Add the fake full 1s mask to the first dimension. # Add the fake full 1s mask to the first dimension.
@ -567,7 +570,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
return samples return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x)) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x, first_phase=True))
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2] samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]