Add input validations before loading dataset for training
This commit is contained in:
parent
35c45df28b
commit
ab27c111d0
2 changed files with 59 additions and 29 deletions
|
@ -332,7 +332,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
||||||
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
||||||
from modules import images
|
from modules import images
|
||||||
|
|
||||||
assert hypernetwork_name, 'hypernetwork not selected'
|
save_hypernetwork_every = save_hypernetwork_every or 0
|
||||||
|
create_image_every = create_image_every or 0
|
||||||
|
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
|
||||||
|
|
||||||
path = shared.hypernetworks.get(hypernetwork_name, None)
|
path = shared.hypernetworks.get(hypernetwork_name, None)
|
||||||
shared.loaded_hypernetwork = Hypernetwork()
|
shared.loaded_hypernetwork = Hypernetwork()
|
||||||
|
@ -358,18 +360,24 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
||||||
else:
|
else:
|
||||||
images_dir = None
|
images_dir = None
|
||||||
|
|
||||||
|
hypernetwork = shared.loaded_hypernetwork
|
||||||
|
|
||||||
|
ititial_step = hypernetwork.step or 0
|
||||||
|
if ititial_step > steps:
|
||||||
|
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
|
||||||
|
return hypernetwork, filename
|
||||||
|
|
||||||
|
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||||
|
|
||||||
|
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||||
with torch.autocast("cuda"):
|
with torch.autocast("cuda"):
|
||||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
|
||||||
|
|
||||||
if unload:
|
if unload:
|
||||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||||
|
|
||||||
hypernetwork = shared.loaded_hypernetwork
|
|
||||||
weights = hypernetwork.weights()
|
|
||||||
for weight in weights:
|
|
||||||
weight.requires_grad = True
|
|
||||||
|
|
||||||
size = len(ds.indexes)
|
size = len(ds.indexes)
|
||||||
loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
||||||
losses = torch.zeros((size,))
|
losses = torch.zeros((size,))
|
||||||
|
@ -377,20 +385,18 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
||||||
previous_mean_loss = 0
|
previous_mean_loss = 0
|
||||||
print("Mean loss of {} elements".format(size))
|
print("Mean loss of {} elements".format(size))
|
||||||
|
|
||||||
last_saved_file = "<none>"
|
weights = hypernetwork.weights()
|
||||||
last_saved_image = "<none>"
|
for weight in weights:
|
||||||
forced_filename = "<none>"
|
weight.requires_grad = True
|
||||||
|
|
||||||
ititial_step = hypernetwork.step or 0
|
|
||||||
if ititial_step > steps:
|
|
||||||
return hypernetwork, filename
|
|
||||||
|
|
||||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
|
||||||
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
|
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
|
||||||
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
||||||
|
|
||||||
steps_without_grad = 0
|
steps_without_grad = 0
|
||||||
|
|
||||||
|
last_saved_file = "<none>"
|
||||||
|
last_saved_image = "<none>"
|
||||||
|
forced_filename = "<none>"
|
||||||
|
|
||||||
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
||||||
for i, entries in pbar:
|
for i, entries in pbar:
|
||||||
hypernetwork.step = i + ititial_step
|
hypernetwork.step = i + ititial_step
|
||||||
|
|
|
@ -204,9 +204,30 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
||||||
**values,
|
**values,
|
||||||
})
|
})
|
||||||
|
|
||||||
|
def validate_train_inputs(model_name, learn_rate, batch_size, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
|
||||||
|
assert model_name, f"{name} not selected"
|
||||||
|
assert learn_rate, "Learning rate is empty or 0"
|
||||||
|
assert isinstance(batch_size, int), "Batch size must be integer"
|
||||||
|
assert batch_size > 0, "Batch size must be positive"
|
||||||
|
assert data_root, "Dataset directory is empty"
|
||||||
|
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
|
||||||
|
assert os.listdir(data_root), "Dataset directory is empty"
|
||||||
|
assert template_file, "Prompt template file is empty"
|
||||||
|
assert os.path.isfile(template_file), "Prompt template file doesn't exist"
|
||||||
|
assert steps, "Max steps is empty or 0"
|
||||||
|
assert isinstance(steps, int), "Max steps must be integer"
|
||||||
|
assert steps > 0 , "Max steps must be positive"
|
||||||
|
assert isinstance(save_model_every, int), "Save {name} must be integer"
|
||||||
|
assert save_model_every >= 0 , "Save {name} must be positive or 0"
|
||||||
|
assert isinstance(create_image_every, int), "Create image must be integer"
|
||||||
|
assert create_image_every >= 0 , "Create image must be positive or 0"
|
||||||
|
if save_model_every or create_image_every:
|
||||||
|
assert log_directory, "Log directory is empty"
|
||||||
|
|
||||||
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||||
assert embedding_name, 'embedding not selected'
|
save_embedding_every = save_embedding_every or 0
|
||||||
|
create_image_every = create_image_every or 0
|
||||||
|
validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
|
||||||
|
|
||||||
shared.state.textinfo = "Initializing textual inversion training..."
|
shared.state.textinfo = "Initializing textual inversion training..."
|
||||||
shared.state.job_count = steps
|
shared.state.job_count = steps
|
||||||
|
@ -235,14 +256,24 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
||||||
|
|
||||||
cond_model = shared.sd_model.cond_stage_model
|
cond_model = shared.sd_model.cond_stage_model
|
||||||
|
|
||||||
|
hijack = sd_hijack.model_hijack
|
||||||
|
|
||||||
|
embedding = hijack.embedding_db.word_embeddings[embedding_name]
|
||||||
|
|
||||||
|
ititial_step = embedding.step or 0
|
||||||
|
if ititial_step > steps:
|
||||||
|
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
|
||||||
|
return embedding, filename
|
||||||
|
|
||||||
|
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||||
|
|
||||||
|
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||||
with torch.autocast("cuda"):
|
with torch.autocast("cuda"):
|
||||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
|
||||||
|
|
||||||
hijack = sd_hijack.model_hijack
|
|
||||||
|
|
||||||
embedding = hijack.embedding_db.word_embeddings[embedding_name]
|
|
||||||
embedding.vec.requires_grad = True
|
embedding.vec.requires_grad = True
|
||||||
|
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
||||||
|
|
||||||
losses = torch.zeros((32,))
|
losses = torch.zeros((32,))
|
||||||
|
|
||||||
|
@ -251,13 +282,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
||||||
forced_filename = "<none>"
|
forced_filename = "<none>"
|
||||||
embedding_yet_to_be_embedded = False
|
embedding_yet_to_be_embedded = False
|
||||||
|
|
||||||
ititial_step = embedding.step or 0
|
|
||||||
if ititial_step > steps:
|
|
||||||
return embedding, filename
|
|
||||||
|
|
||||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
|
||||||
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
|
||||||
|
|
||||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||||
for i, entries in pbar:
|
for i, entries in pbar:
|
||||||
embedding.step = i + ititial_step
|
embedding.step = i + ititial_step
|
||||||
|
|
Loading…
Reference in a new issue