Fix base VAE caching was done after loading VAE, also add safeguard

This commit is contained in:
Muhammad Rizqi Nur 2022-11-03 11:10:53 +07:00
parent 8ab4927452
commit abc1e79a5d
2 changed files with 9 additions and 11 deletions

View file

@ -220,6 +220,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
model.sd_model_checkpoint = checkpoint_file model.sd_model_checkpoint = checkpoint_file
model.sd_checkpoint_info = checkpoint_info model.sd_checkpoint_info = checkpoint_info
sd_vae.clear_loaded_vae()
sd_vae.load_vae(model, vae_file) sd_vae.load_vae(model, vae_file)

View file

@ -15,7 +15,7 @@ vae_path = os.path.abspath(os.path.join(models_path, vae_dir))
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
default_vae_dict = {"auto": "auto", "None": "None"} default_vae_dict = {"auto": "auto", "None": None, None: None}
default_vae_list = ["auto", "None"] default_vae_list = ["auto", "None"]
@ -39,6 +39,7 @@ def get_base_vae(model):
def store_base_vae(model): def store_base_vae(model):
global base_vae, checkpoint_info global base_vae, checkpoint_info
if checkpoint_info != model.sd_checkpoint_info: if checkpoint_info != model.sd_checkpoint_info:
assert not loaded_vae_file, "Trying to store non-base VAE!"
base_vae = model.first_stage_model.state_dict().copy() base_vae = model.first_stage_model.state_dict().copy()
checkpoint_info = model.sd_checkpoint_info checkpoint_info = model.sd_checkpoint_info
@ -50,9 +51,11 @@ def delete_base_vae():
def restore_base_vae(model): def restore_base_vae(model):
global loaded_vae_file
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
print("Restoring base VAE") print("Restoring base VAE")
load_vae_dict(model, base_vae) load_vae_dict(model, base_vae)
loaded_vae_file = None
delete_base_vae() delete_base_vae()
@ -140,10 +143,10 @@ def load_vae(model, vae_file=None):
if vae_file: if vae_file:
print(f"Loading VAE weights from: {vae_file}") print(f"Loading VAE weights from: {vae_file}")
store_base_vae(model)
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
load_vae_dict(model, vae_dict_1) load_vae_dict(model, vae_dict_1)
store_base_vae(model)
# If vae used is not in dict, update it # If vae used is not in dict, update it
# It will be removed on refresh though # It will be removed on refresh though
@ -157,15 +160,6 @@ def load_vae(model, vae_file=None):
loaded_vae_file = vae_file loaded_vae_file = vae_file
"""
# Save current VAE to VAE settings, maybe? will it work?
if save_settings:
if vae_file is None:
vae_opt = "None"
# shared.opts.sd_vae = vae_opt
"""
first_load = False first_load = False
@ -174,6 +168,9 @@ def load_vae_dict(model, vae_dict_1):
model.first_stage_model.load_state_dict(vae_dict_1) model.first_stage_model.load_state_dict(vae_dict_1)
model.first_stage_model.to(devices.dtype_vae) model.first_stage_model.to(devices.dtype_vae)
def clear_loaded_vae():
global loaded_vae_file
loaded_vae_file = None
def reload_vae_weights(sd_model=None, vae_file="auto"): def reload_vae_weights(sd_model=None, vae_file="auto"):
from modules import lowvram, devices, sd_hijack from modules import lowvram, devices, sd_hijack