Unload sd_model before loading the other

This commit is contained in:
Jairo Correa 2022-11-01 04:01:49 -03:00
parent 5c9b3625fa
commit af758e97fa
5 changed files with 34 additions and 10 deletions

View file

@ -38,13 +38,18 @@ def setup_for_low_vram(sd_model, use_medvram):
# see below for register_forward_pre_hook;
# first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is
# useless here, and we just replace those methods
def first_stage_model_encode_wrap(self, encoder, x):
send_me_to_gpu(self, None)
return encoder(x)
def first_stage_model_decode_wrap(self, decoder, z):
send_me_to_gpu(self, None)
return decoder(z)
first_stage_model = sd_model.first_stage_model
first_stage_model_encode = sd_model.first_stage_model.encode
first_stage_model_decode = sd_model.first_stage_model.decode
def first_stage_model_encode_wrap(x):
send_me_to_gpu(first_stage_model, None)
return first_stage_model_encode(x)
def first_stage_model_decode_wrap(z):
send_me_to_gpu(first_stage_model, None)
return first_stage_model_decode(z)
# remove three big modules, cond, first_stage, and unet from the model and then
# send the model to GPU. Then put modules back. the modules will be in CPU.
@ -56,8 +61,8 @@ def setup_for_low_vram(sd_model, use_medvram):
# register hooks for those the first two models
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.encode = lambda x, en=sd_model.first_stage_model.encode: first_stage_model_encode_wrap(sd_model.first_stage_model, en, x)
sd_model.first_stage_model.decode = lambda z, de=sd_model.first_stage_model.decode: first_stage_model_decode_wrap(sd_model.first_stage_model, de, z)
sd_model.first_stage_model.encode = first_stage_model_encode_wrap
sd_model.first_stage_model.decode = first_stage_model_decode_wrap
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
if use_medvram:

View file

@ -597,6 +597,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.scripts is not None:
p.scripts.postprocess(p, res)
p.sd_model = None
p.sampler = None
return res

View file

@ -94,6 +94,10 @@ class StableDiffusionModelHijack:
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
self.layers = None
self.circular_enabled = False
self.clip = None
def apply_circular(self, enable):
if self.circular_enabled == enable:
return

View file

@ -1,6 +1,7 @@
import collections
import os.path
import sys
import gc
from collections import namedtuple
import torch
import re
@ -220,6 +221,12 @@ def load_model(checkpoint_info=None):
if checkpoint_info.config != shared.cmd_opts.config:
print(f"Loading config from: {checkpoint_info.config}")
if shared.sd_model:
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
shared.sd_model = None
gc.collect()
devices.torch_gc()
sd_config = OmegaConf.load(checkpoint_info.config)
if should_hijack_inpainting(checkpoint_info):
@ -233,6 +240,7 @@ def load_model(checkpoint_info=None):
checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
do_inpainting_hijack()
sd_model = instantiate_from_config(sd_config.model)
load_model_weights(sd_model, checkpoint_info)
@ -252,14 +260,18 @@ def load_model(checkpoint_info=None):
return sd_model
def reload_model_weights(sd_model, info=None):
def reload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint()
if not sd_model:
sd_model = shared.sd_model
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info)
return shared.sd_model

View file

@ -77,7 +77,7 @@ def initialize():
modules.scripts.load_scripts()
modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)