diff --git a/launch.py b/launch.py index 537670a3..2e6b3369 100644 --- a/launch.py +++ b/launch.py @@ -104,6 +104,7 @@ def prepare_enviroment(): args = shlex.split(commandline_args) args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test') + args, reinstall_xformers = extract_arg(args, '--reinstall-xformers') xformers = '--xformers' in args deepdanbooru = '--deepdanbooru' in args ngrok = '--ngrok' in args @@ -128,9 +129,9 @@ def prepare_enviroment(): if not is_installed("clip"): run_pip(f"install {clip_package}", "clip") - if not is_installed("xformers") and xformers and platform.python_version().startswith("3.10"): + if (not is_installed("xformers") or reinstall_xformers) and xformers and platform.python_version().startswith("3.10"): if platform.system() == "Windows": - run_pip("install https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/c/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl", "xformers") + run_pip("install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl", "xformers") elif platform.system() == "Linux": run_pip("install xformers", "xformers") diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index a2b3bc0a..4905710e 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -272,15 +272,17 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log optimizer.zero_grad() loss.backward() optimizer.step() - - pbar.set_description(f"loss: {losses.mean():.7f}") + mean_loss = losses.mean() + if torch.isnan(mean_loss): + raise RuntimeError("Loss diverged.") + pbar.set_description(f"loss: {mean_loss:.7f}") if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') hypernetwork.save(last_saved_file) textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { - "loss": f"{losses.mean():.7f}", + "loss": f"{mean_loss:.7f}", "learn_rate": scheduler.learn_rate }) @@ -328,7 +330,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log shared.state.textinfo = f"""

-Loss: {losses.mean():.7f}
+Loss: {mean_loss:.7f}
Step: {hypernetwork.step}
Last prompt: {html.escape(entries[0].cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 491312b4..01fcb78f 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -29,8 +29,8 @@ def apply_optimizations(): ldm.modules.diffusionmodules.model.nonlinearity = silu - if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and ( - 6, 0) <= torch.cuda.get_device_capability(shared.device) <= (8, 6)): + + if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): print("Applying xformers cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index f59b47a9..d2a389c9 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -88,9 +88,9 @@ class EmbeddingDatabase: data = [] - if filename.upper().endswith('.PNG'): + if os.path.splitext(filename.upper())[-1] in ['.PNG', '.WEBP', '.JXL', '.AVIF']: embed_image = Image.open(path) - if 'sd-ti-embedding' in embed_image.text: + if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text: data = embedding_from_b64(embed_image.text['sd-ti-embedding']) name = data.get('name', name) else: @@ -242,6 +242,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc last_saved_file = "" last_saved_image = "" + embedding_yet_to_be_embedded = False ititial_step = embedding.step or 0 if ititial_step > steps: @@ -283,6 +284,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') embedding.save(last_saved_file) + embedding_yet_to_be_embedded = True write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { "loss": f"{losses.mean():.7f}", @@ -320,7 +322,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc shared.state.current_image = image - if save_image_with_stored_embedding and os.path.exists(last_saved_file): + if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded: last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png') @@ -329,15 +331,22 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc info.add_text("sd-ti-embedding", embedding_to_b64(data)) title = "<{}>".format(data.get('name', '???')) + + try: + vectorSize = list(data['string_to_param'].values())[0].shape[0] + except Exception as e: + vectorSize = '?' + checkpoint = sd_models.select_checkpoint() footer_left = checkpoint.model_name footer_mid = '[{}]'.format(checkpoint.hash) - footer_right = '{}'.format(embedding.step) + footer_right = '{}v {}s'.format(vectorSize, embedding.step) captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) captioned_image = insert_image_data_embed(captioned_image, data) captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info) + embedding_yet_to_be_embedded = False image.save(last_saved_image) diff --git a/modules/ui.py b/modules/ui.py index 1f6fcdc9..13ba3142 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -158,10 +158,7 @@ def save_files(js_data, images, do_make_zip, index): writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"]) for image_index, filedata in enumerate(images, start_index): - if filedata.startswith("data:image/png;base64,"): - filedata = filedata[len("data:image/png;base64,"):] - - image = Image.open(io.BytesIO(base64.decodebytes(filedata.encode('utf-8')))) + image = image_from_url_text(filedata) is_grid = image_index < p.index_of_first_image i = 0 if is_grid else (image_index - p.index_of_first_image) @@ -638,7 +635,7 @@ def create_ui(wrap_gradio_gpu_call): txt2img_preview = gr.Image(elem_id='txt2img_preview', visible=False) txt2img_gallery = gr.Gallery(label='Output', show_label=False, elem_id='txt2img_gallery').style(grid=4) - with gr.Group(): + with gr.Column(): with gr.Row(): save = gr.Button('Save') send_to_img2img = gr.Button('Send to img2img') @@ -862,7 +859,7 @@ def create_ui(wrap_gradio_gpu_call): img2img_preview = gr.Image(elem_id='img2img_preview', visible=False) img2img_gallery = gr.Gallery(label='Output', show_label=False, elem_id='img2img_gallery').style(grid=4) - with gr.Group(): + with gr.Column(): with gr.Row(): save = gr.Button('Save') img2img_send_to_img2img = gr.Button('Send to img2img') diff --git a/style.css b/style.css index b534f950..33832ebf 100644 --- a/style.css +++ b/style.css @@ -237,13 +237,6 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s margin: 0; } -.gr-panel div.flex-col div.justify-between div{ - position: absolute; - top: -0.1em; - right: 1em; - padding: 0 0.5em; -} - #settings .gr-panel div.flex-col div.justify-between div{ position: relative; z-index: 200; @@ -316,6 +309,8 @@ input[type="range"]{ height: 100%; overflow: auto; background-color: rgba(20, 20, 20, 0.95); + user-select: none; + -webkit-user-select: none; } .modalControls { @@ -520,4 +515,4 @@ img2maskimg, #img2maskimg > .h-60, #img2maskimg > .h-60 > div, #img2maskimg > .h height: 480px !important; max-height: 480px !important; min-height: 480px !important; -} \ No newline at end of file +}