Include model in log file. Exclude directory.

This commit is contained in:
timntorres 2023-01-05 09:14:56 -08:00
parent b85c2b5cf4
commit b6bab2f052
2 changed files with 19 additions and 31 deletions

View file

@ -402,30 +402,22 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
shared.reload_hypernetworks() shared.reload_hypernetworks()
# Note: textual_inversion.py has a nearly identical function of the same name. # Note: textual_inversion.py has a nearly identical function of the same name.
def save_settings_to_file(initial_step, num_of_dataset_images, hypernetwork_name, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): def save_settings_to_file(model_name, model_hash, initial_step, num_of_dataset_images, hypernetwork_name, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
checkpoint = sd_models.select_checkpoint()
model_name = checkpoint.model_name
model_hash = '[{}]'.format(checkpoint.hash)
# Starting index of preview-related arguments. # Starting index of preview-related arguments.
border_index = 19 border_index = 21
# Get a list of the argument names.
# Get a list of the argument names, excluding default argument. arg_names = inspect.getfullargspec(save_settings_to_file).args
sig = inspect.signature(save_settings_to_file)
arg_names = [p.name for p in sig.parameters.values() if p.default == p.empty]
# Create a list of the argument names to include in the settings string. # Create a list of the argument names to include in the settings string.
names = arg_names[:border_index] # Include all arguments up until the preview-related ones. names = arg_names[:border_index] # Include all arguments up until the preview-related ones.
# Include preview-related arguments if applicable.
if preview_from_txt2img: if preview_from_txt2img:
names.extend(arg_names[border_index:]) names.extend(arg_names[border_index:]) # Include preview-related arguments if applicable.
# Build the settings string. # Build the settings string.
settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n" settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n"
for name in names: for name in names:
value = locals()[name] if name != 'log_directory': # It's useless and redundant to save log_directory.
settings_str += f"{name}: {value}\n" value = locals()[name]
settings_str += f"{name}: {value}\n"
# Create or append to the file.
with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout: with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout:
fout.write(settings_str + "\n\n") fout.write(settings_str + "\n\n")
@ -485,7 +477,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method) ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
if shared.opts.save_training_settings_to_txt: if shared.opts.save_training_settings_to_txt:
save_settings_to_file(initial_step, len(ds), hypernetwork_name, hypernetwork.layer_structure, hypernetwork.activation_func, hypernetwork.weight_init, hypernetwork.add_layer_norm, hypernetwork.use_dropout, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height) save_settings_to_file(checkpoint.model_name, '[{}]'.format(checkpoint.hash), initial_step, len(ds), hypernetwork_name, hypernetwork.layer_structure, hypernetwork.activation_func, hypernetwork.weight_init, hypernetwork.add_layer_norm, hypernetwork.use_dropout, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height)
latent_sampling_method = ds.latent_sampling_method latent_sampling_method = ds.latent_sampling_method

View file

@ -231,26 +231,22 @@ def write_loss(log_directory, filename, step, epoch_len, values):
}) })
# Note: hypernetwork.py has a nearly identical function of the same name. # Note: hypernetwork.py has a nearly identical function of the same name.
def save_settings_to_file(initial_step, num_of_dataset_images, embedding_name, vectors_per_token, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): def save_settings_to_file(model_name, model_hash, initial_step, num_of_dataset_images, embedding_name, vectors_per_token, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
checkpoint = sd_models.select_checkpoint()
model_name = checkpoint.model_name
model_hash = '[{}]'.format(checkpoint.hash)
# Starting index of preview-related arguments. # Starting index of preview-related arguments.
border_index = 16 border_index = 18
# Get a list of the argument names. # Get a list of the argument names.
arg_names = inspect.getfullargspec(save_settings_to_file).args arg_names = inspect.getfullargspec(save_settings_to_file).args
# Create a list of the argument names to include in the settings string. # Create a list of the argument names to include in the settings string.
names = arg_names[:border_index] # Include all arguments up until the preview-related ones. names = arg_names[:border_index] # Include all arguments up until the preview-related ones.
if preview_from_txt2img: if preview_from_txt2img:
names.extend(arg_names[border_index:]) # Include all remaining arguments if `preview_from_txt2img` is True. names.extend(arg_names[border_index:]) # Include preview-related arguments if applicable.
# Build the settings string. # Build the settings string.
settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n" settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n"
for name in names: for name in names:
value = locals()[name] if name != 'log_directory': # It's useless and redundant to save log_directory.
settings_str += f"{name}: {value}\n" value = locals()[name]
settings_str += f"{name}: {value}\n"
# Create or append to the file.
with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout: with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout:
fout.write(settings_str + "\n\n") fout.write(settings_str + "\n\n")
@ -333,7 +329,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method) ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
if shared.opts.save_training_settings_to_txt: if shared.opts.save_training_settings_to_txt:
save_settings_to_file(initial_step, len(ds), embedding_name, len(embedding.vec), learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height) save_settings_to_file(checkpoint.model_name, '[{}]'.format(checkpoint.hash), initial_step, len(ds), embedding_name, len(embedding.vec), learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height)
latent_sampling_method = ds.latent_sampling_method latent_sampling_method = ds.latent_sampling_method