Include model in log file. Exclude directory.
This commit is contained in:
parent
b85c2b5cf4
commit
b6bab2f052
2 changed files with 19 additions and 31 deletions
|
@ -402,30 +402,22 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
|
||||||
|
|
||||||
shared.reload_hypernetworks()
|
shared.reload_hypernetworks()
|
||||||
# Note: textual_inversion.py has a nearly identical function of the same name.
|
# Note: textual_inversion.py has a nearly identical function of the same name.
|
||||||
def save_settings_to_file(initial_step, num_of_dataset_images, hypernetwork_name, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
def save_settings_to_file(model_name, model_hash, initial_step, num_of_dataset_images, hypernetwork_name, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||||
checkpoint = sd_models.select_checkpoint()
|
|
||||||
model_name = checkpoint.model_name
|
|
||||||
model_hash = '[{}]'.format(checkpoint.hash)
|
|
||||||
# Starting index of preview-related arguments.
|
# Starting index of preview-related arguments.
|
||||||
border_index = 19
|
border_index = 21
|
||||||
|
# Get a list of the argument names.
|
||||||
# Get a list of the argument names, excluding default argument.
|
arg_names = inspect.getfullargspec(save_settings_to_file).args
|
||||||
sig = inspect.signature(save_settings_to_file)
|
|
||||||
arg_names = [p.name for p in sig.parameters.values() if p.default == p.empty]
|
|
||||||
|
|
||||||
# Create a list of the argument names to include in the settings string.
|
# Create a list of the argument names to include in the settings string.
|
||||||
names = arg_names[:border_index] # Include all arguments up until the preview-related ones.
|
names = arg_names[:border_index] # Include all arguments up until the preview-related ones.
|
||||||
|
|
||||||
# Include preview-related arguments if applicable.
|
|
||||||
if preview_from_txt2img:
|
if preview_from_txt2img:
|
||||||
names.extend(arg_names[border_index:])
|
names.extend(arg_names[border_index:]) # Include preview-related arguments if applicable.
|
||||||
|
|
||||||
# Build the settings string.
|
# Build the settings string.
|
||||||
settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n"
|
settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n"
|
||||||
for name in names:
|
for name in names:
|
||||||
value = locals()[name]
|
if name != 'log_directory': # It's useless and redundant to save log_directory.
|
||||||
settings_str += f"{name}: {value}\n"
|
value = locals()[name]
|
||||||
|
settings_str += f"{name}: {value}\n"
|
||||||
|
# Create or append to the file.
|
||||||
with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout:
|
with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout:
|
||||||
fout.write(settings_str + "\n\n")
|
fout.write(settings_str + "\n\n")
|
||||||
|
|
||||||
|
@ -485,7 +477,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
|
||||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
||||||
|
|
||||||
if shared.opts.save_training_settings_to_txt:
|
if shared.opts.save_training_settings_to_txt:
|
||||||
save_settings_to_file(initial_step, len(ds), hypernetwork_name, hypernetwork.layer_structure, hypernetwork.activation_func, hypernetwork.weight_init, hypernetwork.add_layer_norm, hypernetwork.use_dropout, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height)
|
save_settings_to_file(checkpoint.model_name, '[{}]'.format(checkpoint.hash), initial_step, len(ds), hypernetwork_name, hypernetwork.layer_structure, hypernetwork.activation_func, hypernetwork.weight_init, hypernetwork.add_layer_norm, hypernetwork.use_dropout, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height)
|
||||||
|
|
||||||
latent_sampling_method = ds.latent_sampling_method
|
latent_sampling_method = ds.latent_sampling_method
|
||||||
|
|
||||||
|
|
|
@ -231,26 +231,22 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
||||||
})
|
})
|
||||||
|
|
||||||
# Note: hypernetwork.py has a nearly identical function of the same name.
|
# Note: hypernetwork.py has a nearly identical function of the same name.
|
||||||
def save_settings_to_file(initial_step, num_of_dataset_images, embedding_name, vectors_per_token, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
def save_settings_to_file(model_name, model_hash, initial_step, num_of_dataset_images, embedding_name, vectors_per_token, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||||
checkpoint = sd_models.select_checkpoint()
|
|
||||||
model_name = checkpoint.model_name
|
|
||||||
model_hash = '[{}]'.format(checkpoint.hash)
|
|
||||||
# Starting index of preview-related arguments.
|
# Starting index of preview-related arguments.
|
||||||
border_index = 16
|
border_index = 18
|
||||||
# Get a list of the argument names.
|
# Get a list of the argument names.
|
||||||
arg_names = inspect.getfullargspec(save_settings_to_file).args
|
arg_names = inspect.getfullargspec(save_settings_to_file).args
|
||||||
|
|
||||||
# Create a list of the argument names to include in the settings string.
|
# Create a list of the argument names to include in the settings string.
|
||||||
names = arg_names[:border_index] # Include all arguments up until the preview-related ones.
|
names = arg_names[:border_index] # Include all arguments up until the preview-related ones.
|
||||||
if preview_from_txt2img:
|
if preview_from_txt2img:
|
||||||
names.extend(arg_names[border_index:]) # Include all remaining arguments if `preview_from_txt2img` is True.
|
names.extend(arg_names[border_index:]) # Include preview-related arguments if applicable.
|
||||||
|
|
||||||
# Build the settings string.
|
# Build the settings string.
|
||||||
settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n"
|
settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n"
|
||||||
for name in names:
|
for name in names:
|
||||||
value = locals()[name]
|
if name != 'log_directory': # It's useless and redundant to save log_directory.
|
||||||
settings_str += f"{name}: {value}\n"
|
value = locals()[name]
|
||||||
|
settings_str += f"{name}: {value}\n"
|
||||||
|
# Create or append to the file.
|
||||||
with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout:
|
with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout:
|
||||||
fout.write(settings_str + "\n\n")
|
fout.write(settings_str + "\n\n")
|
||||||
|
|
||||||
|
@ -333,7 +329,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
||||||
|
|
||||||
if shared.opts.save_training_settings_to_txt:
|
if shared.opts.save_training_settings_to_txt:
|
||||||
save_settings_to_file(initial_step, len(ds), embedding_name, len(embedding.vec), learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height)
|
save_settings_to_file(checkpoint.model_name, '[{}]'.format(checkpoint.hash), initial_step, len(ds), embedding_name, len(embedding.vec), learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height)
|
||||||
|
|
||||||
latent_sampling_method = ds.latent_sampling_method
|
latent_sampling_method = ds.latent_sampling_method
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue