Merge branch 'lora_sd2' into lora_inplace

This commit is contained in:
AUTOMATIC 2023-03-26 07:04:43 +03:00
commit b705c9b72b

View file

@ -14,7 +14,7 @@ re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)") re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
def convert_diffusers_name_to_compvis(key): def convert_diffusers_name_to_compvis(key, is_sd2):
def match(match_list, regex): def match(match_list, regex):
r = re.match(regex, key) r = re.match(regex, key)
if not r: if not r:
@ -36,6 +36,14 @@ def convert_diffusers_name_to_compvis(key):
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}" return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_text_block): if match(m, re_text_block):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
return key return key
@ -102,9 +110,10 @@ def load_lora(name, filename):
sd = sd_models.read_state_dict(filename) sd = sd_models.read_state_dict(filename)
keys_failed_to_match = [] keys_failed_to_match = []
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping
for key_diffusers, weight in sd.items(): for key_diffusers, weight in sd.items():
fullkey = convert_diffusers_name_to_compvis(key_diffusers) fullkey = convert_diffusers_name_to_compvis(key_diffusers, is_sd2)
key, lora_key = fullkey.split(".", 1) key, lora_key = fullkey.split(".", 1)
sd_module = shared.sd_model.lora_layer_mapping.get(key, None) sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
@ -123,9 +132,13 @@ def load_lora(name, filename):
if type(sd_module) == torch.nn.Linear: if type(sd_module) == torch.nn.Linear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
module = torch.nn.modules.linear.NonDynamicallyQuantizableLinear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d: elif type(sd_module) == torch.nn.Conv2d:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else: else:
print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}')
continue
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}' assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
with torch.no_grad(): with torch.no_grad():
@ -242,6 +255,10 @@ def lora_Conv2d_load_state_dict(self: torch.nn.Conv2d, *args, **kwargs):
return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs) return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs)
def lora_NonDynamicallyQuantizableLinear_forward(self, input):
return lora_forward(self, input, torch.nn.NonDynamicallyQuantizableLinear_forward_before_lora(self, input))
def list_available_loras(): def list_available_loras():
available_loras.clear() available_loras.clear()