added support for hypernetworks (???)

This commit is contained in:
AUTOMATIC 2022-10-07 10:17:52 +03:00
parent 2995107fa2
commit bad7cb29ce
4 changed files with 88 additions and 3 deletions

55
modules/hypernetwork.py Normal file
View file

@ -0,0 +1,55 @@
import glob
import os
import torch
from modules import devices
class HypernetworkModule(torch.nn.Module):
def __init__(self, dim, state_dict):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim * 2)
self.linear2 = torch.nn.Linear(dim * 2, dim)
self.load_state_dict(state_dict, strict=True)
self.to(devices.device)
def forward(self, x):
return x + (self.linear2(self.linear1(x)))
class Hypernetwork:
filename = None
name = None
def __init__(self, filename):
self.filename = filename
self.name = os.path.splitext(os.path.basename(filename))[0]
self.layers = {}
state_dict = torch.load(filename, map_location='cpu')
for size, sd in state_dict.items():
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
def load_hypernetworks(path):
res = {}
for filename in glob.iglob(path + '**/*.pt', recursive=True):
hn = Hypernetwork(filename)
res[hn.name] = hn
return res
def apply(self, x, context=None, mask=None, original=None):
if CrossAttention.hypernetwork is not None and context.shape[2] in CrossAttention.hypernetwork:
if context.shape[1] == 77 and CrossAttention.noise_cond:
context = context + (torch.randn_like(context) * 0.1)
h_k, h_v = CrossAttention.hypernetwork[context.shape[2]]
k = self.to_k(h_k(context))
v = self.to_v(h_v(context))
else:
k = self.to_k(context)
v = self.to_v(context)

View file

@ -5,6 +5,8 @@ from torch import einsum
from ldm.util import default
from einops import rearrange
from modules import shared
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
@ -42,8 +44,19 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
q_in = self.to_q(x)
context = default(context, x)
k_in = self.to_k(context) * self.scale
v_in = self.to_v(context)
hypernetwork = shared.selected_hypernetwork()
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
if hypernetwork_layers is not None:
k_in = self.to_k(hypernetwork_layers[0](context))
v_in = self.to_v(hypernetwork_layers[1](context))
else:
k_in = self.to_k(context)
v_in = self.to_v(context)
k_in *= self.scale
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))

View file

@ -13,7 +13,7 @@ import modules.memmon
import modules.sd_models
import modules.styles
import modules.devices as devices
from modules import sd_samplers
from modules import sd_samplers, hypernetwork
from modules.paths import models_path, script_path, sd_path
sd_model_file = os.path.join(script_path, 'model.ckpt')
@ -76,6 +76,12 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
config_filename = cmd_opts.ui_settings_file
hypernetworks = hypernetwork.load_hypernetworks(os.path.join(models_path, 'hypernetworks'))
def selected_hypernetwork():
return hypernetworks.get(opts.sd_hypernetwork, None)
class State:
interrupted = False
@ -206,6 +212,7 @@ options_templates.update(options_section(('system', "System"), {
options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}),
"sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),

View file

@ -77,6 +77,11 @@ def apply_checkpoint(p, x, xs):
modules.sd_models.reload_model_weights(shared.sd_model, info)
def apply_hypernetwork(p, x, xs):
hn = shared.hypernetworks.get(x, None)
opts.data["sd_hypernetwork"] = hn.name if hn is not None else 'None'
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
@ -122,6 +127,7 @@ axis_options = [
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list),
AxisOption("Sampler", str, apply_sampler, format_value),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value),
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value),
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label),
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label),
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
@ -193,6 +199,8 @@ class Script(scripts.Script):
modules.processing.fix_seed(p)
p.batch_size = 1
initial_hn = opts.sd_hypernetwork
def process_axis(opt, vals):
if opt.label == 'Nothing':
return [0]
@ -300,4 +308,6 @@ class Script(scripts.Script):
# restore checkpoint in case it was changed by axes
modules.sd_models.reload_model_weights(shared.sd_model)
opts.data["sd_hypernetwork"] = initial_hn
return processed