Save Optimizer next to TI embedding

Also add check to load only .PT and .BIN files as embeddings. (since we add .optim files in the same directory)
This commit is contained in:
Shondoit 2023-01-03 10:26:37 +01:00
parent c0ee148870
commit bddebe09ed
2 changed files with 33 additions and 9 deletions

View file

@ -355,7 +355,7 @@ options_templates.update(options_section(('system', "System"), {
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
"pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."),
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),

View file

@ -28,6 +28,7 @@ class Embedding:
self.cached_checksum = None
self.sd_checkpoint = None
self.sd_checkpoint_name = None
self.optimizer_state_dict = None
def save(self, filename):
embedding_data = {
@ -41,6 +42,13 @@ class Embedding:
torch.save(embedding_data, filename)
if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None:
optimizer_saved_dict = {
'hash': self.checksum(),
'optimizer_state_dict': self.optimizer_state_dict,
}
torch.save(optimizer_saved_dict, filename + '.optim')
def checksum(self):
if self.cached_checksum is not None:
return self.cached_checksum
@ -95,9 +103,10 @@ class EmbeddingDatabase:
self.expected_shape = self.get_expected_shape()
def process_file(path, filename):
name = os.path.splitext(filename)[0]
name, ext = os.path.splitext(filename)
ext = ext.upper()
if os.path.splitext(filename.upper())[-1] in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
@ -105,8 +114,10 @@ class EmbeddingDatabase:
else:
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
else:
elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
else:
return
# textual inversion embeddings
if 'string_to_param' in data:
@ -300,6 +311,20 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
embedding.vec.requires_grad = True
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
if shared.opts.save_optimizer_state:
optimizer_state_dict = None
if os.path.exists(filename + '.optim'):
optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
if embedding.checksum() == optimizer_saved_dict.get('hash', None):
optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
if optimizer_state_dict is not None:
optimizer.load_state_dict(optimizer_state_dict)
print("Loaded existing optimizer from checkpoint")
else:
print("No saved optimizer exists in checkpoint")
scaler = torch.cuda.amp.GradScaler()
batch_size = ds.batch_size
@ -366,9 +391,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
# Before saving, change name to match current checkpoint.
embedding_name_every = f'{embedding_name}-{steps_done}'
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
#if shared.opts.save_optimizer_state:
#embedding.optimizer_state_dict = optimizer.state_dict()
save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
@ -458,7 +481,7 @@ Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception:
print(traceback.format_exc(), file=sys.stderr)
pass
@ -470,7 +493,7 @@ Last saved image: {html.escape(last_saved_image)}<br/>
return embedding, filename
def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True):
def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
old_embedding_name = embedding.name
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
@ -481,6 +504,7 @@ def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cache
if remove_cached_checksum:
embedding.cached_checksum = None
embedding.name = embedding_name
embedding.optimizer_state_dict = optimizer.state_dict()
embedding.save(filename)
except:
embedding.sd_checkpoint = old_sd_checkpoint