diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index 7813bbcc..dbda3255 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -76,10 +76,10 @@ class Script(scripts.Script): original_prompt = gr.Textbox(label="Original prompt", lines=1) cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0) st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50) + randomness = gr.Slider(label="randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0) + return [original_prompt, cfg, st, randomness] - return [original_prompt, cfg, st] - - def run(self, p, original_prompt, cfg, st): + def run(self, p, original_prompt, cfg, st, randomness): p.batch_size = 1 p.batch_count = 1 @@ -90,18 +90,28 @@ class Script(scripts.Script): same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100 if same_everything: - noise = self.cache.noise + rec_noise = self.cache.noise else: shared.state.job_count += 1 cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt]) uncond = p.sd_model.get_learned_conditioning(p.batch_size * [""]) - noise = find_noise_for_image(p, cond, uncond, cfg, st) - self.cache = Cached(noise, cfg, st, lat, original_prompt) + rec_noise = find_noise_for_image(p, cond, uncond, cfg, st) + self.cache = Cached(rec_noise, cfg, st, lat, original_prompt) + rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])]) + + combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5) + sampler = samplers[p.sampler_index].constructor(p.sd_model) - samples_ddim = sampler.sample(p, noise, conditioning, unconditional_conditioning) - return samples_ddim + sigmas = sampler.model_wrap.get_sigmas(p.steps) + + noise_dt = combined_noise - ( p.init_latent / sigmas[0] ) + + p.seed = p.seed + 1 + + return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning) + p.sample = sample_extra