fixes #3449 - VRAM leak when switching to/from inpainting model

This commit is contained in:
Jay Smith 2022-11-25 20:12:23 -06:00
parent 828438b4a1
commit c833d5bfaa

View file

@ -1,4 +1,4 @@
from collections import namedtuple
from collections import namedtuple, deque
import numpy as np
from math import floor
import torch
@ -335,18 +335,28 @@ class CFGDenoiser(torch.nn.Module):
class TorchHijack:
def __init__(self, kdiff_sampler):
self.kdiff_sampler = kdiff_sampler
def __init__(self, sampler_noises):
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
return self.kdiff_sampler.randn_like
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
return torch.randn_like(x)
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
@ -356,7 +366,6 @@ class KDiffusionSampler:
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None
self.sampler_noise_index = 0
self.stop_at = None
self.eta = None
self.default_eta = 1.0
@ -389,26 +398,14 @@ class KDiffusionSampler:
def number_of_needed_noises(self, p):
return p.steps
def randn_like(self, x):
noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
if noise is not None and x.shape == noise.shape:
res = noise
else:
res = torch.randn_like(x)
self.sampler_noise_index += 1
return res
def initialize(self, p):
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap.step = 0
self.sampler_noise_index = 0
self.eta = p.eta or opts.eta_ancestral
if self.sampler_noises is not None:
k_diffusion.sampling.torch = TorchHijack(self)
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises)
extra_params_kwargs = {}
for param_name in self.extra_params: