This commit is contained in:
yfszzx 2022-10-12 21:24:40 +08:00
commit c87c3b9c11
28 changed files with 565 additions and 171 deletions

1
CODEOWNERS Normal file
View file

@ -0,0 +1 @@
* @AUTOMATIC1111

View file

@ -28,10 +28,12 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- SwinIR, neural network upscaler
- SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
- Adjust sampler eta values (noise multiplier)
- More advanced noise setting options
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
@ -67,6 +69,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
@ -116,13 +119,17 @@ The documentation was moved from this README over to the project's [wiki](https:
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- InvokeAI, lstein - Cross Attention layer optimization - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Rinon Gal - Textual Inversion - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- DeepDanbooru - interrogator for anime diffusors https://github.com/KichangKim/DeepDanbooru
- (You)

View file

@ -1045,7 +1045,6 @@ Bakemono Zukushi,0.67051035,anime
Lucy Madox Brown,0.67032814,fineart
Paul Wonner,0.6700563,scribbles
Guido Borelli Da Caluso,0.66966087,digipa-high-impact
Guido Borelli da Caluso,0.66966087,digipa-high-impact
Emil Alzamora,0.5844039,nudity
Heinrich Brocksieper,0.64469147,fineart
Dan Smith,0.669563,digipa-high-impact

1 artist score category
1045 Lucy Madox Brown 0.67032814 fineart
1046 Paul Wonner 0.6700563 scribbles
1047 Guido Borelli Da Caluso 0.66966087 digipa-high-impact
Guido Borelli da Caluso 0.66966087 digipa-high-impact
1048 Emil Alzamora 0.5844039 nudity
1049 Heinrich Brocksieper 0.64469147 fineart
1050 Dan Smith 0.669563 digipa-high-impact

View file

@ -3,9 +3,9 @@ channels:
- pytorch
- defaults
dependencies:
- python=3.8.5
- pip=20.3
- python=3.10
- pip=22.2.2
- cudatoolkit=11.3
- pytorch=1.11.0
- torchvision=0.12.0
- numpy=1.19.2
- pytorch=1.12.1
- torchvision=0.13.1
- numpy=1.23.1

View file

@ -25,6 +25,7 @@ addEventListener('keydown', (event) => {
} else {
end = target.value.slice(selectionEnd + 1).indexOf(")") + 1;
weight = parseFloat(target.value.slice(selectionEnd + 1, selectionEnd + 1 + end));
if (isNaN(weight)) return;
if (event.key == minus) weight -= 0.1;
if (event.key == plus) weight += 0.1;
@ -38,4 +39,7 @@ addEventListener('keydown', (event) => {
target.selectionStart = selectionStart;
target.selectionEnd = selectionEnd;
}
// Since we've modified a Gradio Textbox component manually, we need to simulate an `input` DOM event to ensure its
// internal Svelte data binding remains in sync.
target.dispatchEvent(new Event("input", { bubbles: true }));
});

View file

@ -80,7 +80,7 @@ titles = {
"Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.",
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be bevaing in an unethical manner.",
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.",
}

View file

@ -101,7 +101,8 @@ function create_tab_index_args(tabId, args){
}
function get_extras_tab_index(){
return create_tab_index_args('mode_extras', arguments)
const [,,...args] = [...arguments]
return [get_tab_index('mode_extras'), get_tab_index('extras_resize_mode'), ...args]
}
function create_submit_args(args){

View file

@ -1,20 +1,74 @@
import os.path
from concurrent.futures import ProcessPoolExecutor
from multiprocessing import get_context
import multiprocessing
import time
def get_deepbooru_tags(pil_image):
"""
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
"""
from modules import shared # prevents circular reference
create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, shared.opts.deepbooru_sort_alpha)
shared.deepbooru_process_return["value"] = -1
shared.deepbooru_process_queue.put(pil_image)
while shared.deepbooru_process_return["value"] == -1:
time.sleep(0.2)
tags = shared.deepbooru_process_return["value"]
release_process()
return tags
def _load_tf_and_return_tags(pil_image, threshold):
def deepbooru_process(queue, deepbooru_process_return, threshold, alpha_sort):
model, tags = get_deepbooru_tags_model()
while True: # while process is running, keep monitoring queue for new image
pil_image = queue.get()
if pil_image == "QUIT":
break
else:
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort)
def create_deepbooru_process(threshold, alpha_sort):
"""
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned
to the dictionary and the method adding the image to the queue should wait for this value to be updated with
the tags.
"""
from modules import shared # prevents circular reference
shared.deepbooru_process_manager = multiprocessing.Manager()
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
shared.deepbooru_process_return["value"] = -1
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, alpha_sort))
shared.deepbooru_process.start()
def release_process():
"""
Stops the deepbooru process to return used memory
"""
from modules import shared # prevents circular reference
shared.deepbooru_process_queue.put("QUIT")
shared.deepbooru_process.join()
shared.deepbooru_process_queue = None
shared.deepbooru_process = None
shared.deepbooru_process_return = None
shared.deepbooru_process_manager = None
def get_deepbooru_tags_model():
import deepdanbooru as dd
import tensorflow as tf
import numpy as np
this_folder = os.path.dirname(__file__)
model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
if not os.path.exists(os.path.join(model_path, 'project.json')):
# there is no point importing these every time
import zipfile
from basicsr.utils.download_util import load_file_from_url
load_file_from_url(r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
load_file_from_url(
r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
model_path)
with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
zip_ref.extractall(model_path)
@ -24,7 +78,13 @@ def _load_tf_and_return_tags(pil_image, threshold):
model = dd.project.load_model_from_project(
model_path, compile_model=True
)
return model, tags
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort):
import deepdanbooru as dd
import tensorflow as tf
import numpy as np
width = model.input_shape[2]
height = model.input_shape[1]
image = np.array(pil_image)
@ -46,28 +106,27 @@ def _load_tf_and_return_tags(pil_image, threshold):
for i, tag in enumerate(tags):
result_dict[tag] = y[i]
result_tags_out = []
unsorted_tags_in_theshold = []
result_tags_print = []
for tag in tags:
if result_dict[tag] >= threshold:
if tag.startswith("rating:"):
continue
result_tags_out.append(tag)
unsorted_tags_in_theshold.append((result_dict[tag], tag))
result_tags_print.append(f'{result_dict[tag]} {tag}')
# sort tags
result_tags_out = []
sort_ndx = 0
if alpha_sort:
sort_ndx = 1
# sort by reverse by likelihood and normal for alpha
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
for weight, tag in unsorted_tags_in_theshold:
result_tags_out.append(tag)
print('\n'.join(sorted(result_tags_print, reverse=True)))
return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
def subprocess_init_no_cuda():
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
def get_deepbooru_tags(pil_image, threshold=0.5):
context = get_context('spawn')
with ProcessPoolExecutor(initializer=subprocess_init_no_cuda, mp_context=context) as executor:
f = executor.submit(_load_tf_and_return_tags, pil_image, threshold, )
ret = f.result() # will rethrow any exceptions
return ret

View file

@ -1,3 +1,4 @@
import math
import os
import numpy as np
@ -19,7 +20,7 @@ import gradio as gr
cached_images = {}
def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
def run_extras(extras_mode, resize_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
devices.torch_gc()
imageArr = []
@ -67,8 +68,13 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
image = res
if resize_mode == 1:
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
crop_info = " (crop)" if upscaling_crop else ""
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
if upscaling_resize != 1.0:
def upscale(image, scaler_index, resize):
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
pixels = tuple(np.array(small).flatten().tolist())
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels
@ -77,15 +83,19 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
if c is None:
upscaler = shared.sd_upscalers[scaler_index]
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
if mode == 1 and crop:
cropped = Image.new("RGB", (resize_w, resize_h))
cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
c = cropped
cached_images[key] = c
return c
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
res = upscale(image, extras_upscaler_1, upscaling_resize)
res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
res2 = upscale(image, extras_upscaler_2, upscaling_resize)
res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
res = Image.blend(res, res2, extras_upscaler_2_visibility)

View file

@ -14,6 +14,7 @@ import torch
from torch import einsum
from einops import rearrange, repeat
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnSchedule
class HypernetworkModule(torch.nn.Module):
@ -42,7 +43,7 @@ class Hypernetwork:
filename = None
name = None
def __init__(self, name=None):
def __init__(self, name=None, enable_sizes=None):
self.filename = None
self.name = name
self.layers = {}
@ -50,7 +51,7 @@ class Hypernetwork:
self.sd_checkpoint = None
self.sd_checkpoint_name = None
for size in [320, 640, 768, 1280]:
for size in enable_sizes or []:
self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
def weights(self):
@ -119,6 +120,17 @@ def load_hypernetwork(filename):
shared.loaded_hypernetwork = None
def find_closest_hypernetwork_name(search: str):
if not search:
return None
search = search.lower()
applicable = [name for name in shared.hypernetworks if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return applicable[0]
def apply_hypernetwork(hypernetwork, context, layer=None):
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
@ -163,7 +175,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None):
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
assert hypernetwork_name, 'embedding not selected'
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
@ -175,6 +187,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
unload = shared.opts.unload_models_when_training
if save_hypernetwork_every > 0:
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
@ -188,19 +201,19 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
else:
images_dir = None
cond_model = shared.sd_model.cond_stage_model
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
hypernetwork = shared.loaded_hypernetwork
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
optimizer = torch.optim.AdamW(weights, lr=learn_rate)
losses = torch.zeros((32,))
last_saved_file = "<none>"
@ -210,22 +223,34 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
if ititial_step > steps:
return hypernetwork, filename
schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
(learn_rate, end_step) = next(schedules)
print(f'Training at rate of {learn_rate} until step {end_step}')
optimizer = torch.optim.AdamW(weights, lr=learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, (x, text) in pbar:
for i, (x, text, cond) in pbar:
hypernetwork.step = i + ititial_step
if hypernetwork.step > steps:
if hypernetwork.step > end_step:
try:
(learn_rate, end_step) = next(schedules)
except Exception:
break
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
for pg in optimizer.param_groups:
pg['lr'] = learn_rate
if shared.state.interrupted:
break
with torch.autocast("cuda"):
c = cond_model([text])
cond = cond.to(devices.device)
x = x.to(devices.device)
loss = shared.sd_model(x.unsqueeze(0), c)[0]
loss = shared.sd_model(x.unsqueeze(0), cond)[0]
del x
del cond
losses[hypernetwork.step % losses.shape[0]] = loss.item()
@ -244,6 +269,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
preview_text = text if preview_image_prompt == "" else preview_image_prompt
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
prompt=preview_text,
@ -255,6 +284,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
processed = processing.process_images(p)
image = processed.images[0]
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
shared.state.current_image = image
image.save(last_saved_image)

View file

@ -5,15 +5,15 @@ import gradio as gr
import modules.textual_inversion.textual_inversion
import modules.textual_inversion.preprocess
from modules import sd_hijack, shared
from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork
def create_hypernetwork(name):
def create_hypernetwork(name, enable_sizes):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name)
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes])
hypernet.save(fn)
shared.reload_hypernetworks()
@ -25,6 +25,8 @@ def train_hypernetwork(*args):
initial_hypernetwork = shared.loaded_hypernetwork
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
try:
sd_hijack.undo_optimizations()
@ -39,5 +41,7 @@ Hypernetwork saved to {html.escape(filename)}
raise
finally:
shared.loaded_hypernetwork = initial_hypernetwork
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
sd_hijack.apply_optimizations()

View file

@ -10,6 +10,7 @@ import torch
import numpy
import _codecs
import zipfile
import re
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
@ -54,11 +55,27 @@ class RestrictedUnpickler(pickle.Unpickler):
raise pickle.UnpicklingError(f"global '{module}/{name}' is forbidden")
allowed_zip_names = ["archive/data.pkl", "archive/version"]
allowed_zip_names_re = re.compile(r"^archive/data/\d+$")
def check_zip_filenames(filename, names):
for name in names:
if name in allowed_zip_names:
continue
if allowed_zip_names_re.match(name):
continue
raise Exception(f"bad file inside {filename}: {name}")
def check_pt(filename):
try:
# new pytorch format is a zip file
with zipfile.ZipFile(filename) as z:
check_zip_filenames(filename, z.namelist())
with z.open('archive/data.pkl') as file:
unpickler = RestrictedUnpickler(file)
unpickler.load()

View file

@ -10,6 +10,7 @@ from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
from modules.shared import opts, device, cmd_opts
from modules.sd_hijack_optimizations import invokeAI_mps_available
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
@ -30,8 +31,16 @@ def apply_optimizations():
elif cmd_opts.opt_split_attention_v1:
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
if not invokeAI_mps_available and shared.device.type == 'mps':
print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
else:
print("Applying cross attention optimization (InvokeAI).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
print("Applying cross attention optimization.")
print("Applying cross attention optimization (Doggettx).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
@ -312,7 +321,17 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
fixes.append(fix[1])
self.hijack.fixes.append(fixes)
z1 = self.process_tokens([x[:75] for x in remade_batch_tokens], [x[:75] for x in batch_multipliers])
tokens = []
multipliers = []
for j in range(len(remade_batch_tokens)):
if len(remade_batch_tokens[j]) > 0:
tokens.append(remade_batch_tokens[j][:75])
multipliers.append(batch_multipliers[j][:75])
else:
tokens.append([self.wrapped.tokenizer.eos_token_id] * 75)
multipliers.append([1.0] * 75)
z1 = self.process_tokens(tokens, multipliers)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
remade_batch_tokens = rem_tokens

View file

@ -1,6 +1,7 @@
import math
import sys
import traceback
import importlib
import torch
from torch import einsum
@ -116,6 +117,102 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
return self.to_out(r2)
def check_for_psutil():
try:
spec = importlib.util.find_spec('psutil')
return spec is not None
except ModuleNotFoundError:
return False
invokeAI_mps_available = check_for_psutil()
# -- Taken from https://github.com/invoke-ai/InvokeAI --
if invokeAI_mps_available:
import psutil
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
def einsum_op_compvis(q, k, v):
s = einsum('b i d, b j d -> b i j', q, k)
s = s.softmax(dim=-1, dtype=s.dtype)
return einsum('b i j, b j d -> b i d', s, v)
def einsum_op_slice_0(q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
end = i + slice_size
r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
return r
def einsum_op_slice_1(q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
return r
def einsum_op_mps_v1(q, k, v):
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
return einsum_op_compvis(q, k, v)
else:
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
return einsum_op_slice_1(q, k, v, slice_size)
def einsum_op_mps_v2(q, k, v):
if mem_total_gb > 8 and q.shape[1] <= 4096:
return einsum_op_compvis(q, k, v)
else:
return einsum_op_slice_0(q, k, v, 1)
def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb:
return einsum_op_compvis(q, k, v)
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
if div <= q.shape[0]:
return einsum_op_slice_0(q, k, v, q.shape[0] // div)
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(q, k, v):
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
# Divide factor of safety as there's copying and fragmentation
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def einsum_op(q, k, v):
if q.device.type == 'cuda':
return einsum_op_cuda(q, k, v)
if q.device.type == 'mps':
if mem_total_gb >= 32:
return einsum_op_mps_v1(q, k, v)
return einsum_op_mps_v2(q, k, v)
# Smaller slices are faster due to L2/L3/SLC caches.
# Tested on i7 with 8MB L3 cache.
return einsum_op_tensor_mem(q, k, v, 32)
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
k = self.to_k(context_k) * self.scale
v = self.to_v(context_v)
del context, context_k, context_v, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
r = einsum_op(q, k, v)
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
# -- End of code from https://github.com/invoke-ai/InvokeAI --
def xformers_attention_forward(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)

View file

@ -50,9 +50,10 @@ parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
parser.add_argument("--use-cpu", nargs='+',choices=['SD', 'GFPGAN', 'BSRGAN', 'ESRGAN', 'SCUNet', 'CodeFormer'], help="use CPU as torch device for specified modules", default=[])
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
@ -85,6 +86,7 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
xformers_available = False
config_filename = cmd_opts.ui_settings_file
os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
@ -227,6 +229,10 @@ options_templates.update(options_section(('system', "System"), {
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
}))
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"),
}))
options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, show_on_main_page=True),
"sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}),
@ -249,8 +255,8 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
"interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"),
"interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
}))
options_templates.update(options_section(('ui', "User interface"), {

View file

@ -8,14 +8,14 @@ from torchvision import transforms
import random
import tqdm
from modules import devices
from modules import devices, shared
import re
re_tag = re.compile(r"[a-zA-Z][_\w\d()]+")
class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False):
self.placeholder_token = placeholder_token
@ -32,12 +32,15 @@ class PersonalizedBase(Dataset):
assert data_root, 'dataset directory not specified'
cond_model = shared.sd_model.cond_stage_model
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
image = Image.open(path)
image = image.convert('RGB')
image = image.resize((self.width, self.height), PIL.Image.BICUBIC)
try:
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
except Exception:
continue
filename = os.path.basename(path)
filename_tokens = os.path.splitext(filename)[0]
@ -52,7 +55,13 @@ class PersonalizedBase(Dataset):
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
init_latent = init_latent.to(devices.cpu)
self.dataset.append((init_latent, filename_tokens))
if include_cond:
text = self.create_text(filename_tokens)
cond = cond_model([text]).to(devices.cpu)
else:
cond = None
self.dataset.append((init_latent, filename_tokens, cond))
self.length = len(self.dataset) * repeats
@ -63,6 +72,12 @@ class PersonalizedBase(Dataset):
def shuffle(self):
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
def create_text(self, filename_tokens):
text = random.choice(self.lines)
text = text.replace("[name]", self.placeholder_token)
text = text.replace("[filewords]", ' '.join(filename_tokens))
return text
def __len__(self):
return self.length
@ -71,10 +86,7 @@ class PersonalizedBase(Dataset):
self.shuffle()
index = self.indexes[i % len(self.indexes)]
x, filename_tokens = self.dataset[index]
x, filename_tokens, cond = self.dataset[index]
text = random.choice(self.lines)
text = text.replace("[name]", self.placeholder_token)
text = text.replace("[filewords]", ' '.join(filename_tokens))
return x, text
text = self.create_text(filename_tokens)
return x, text, cond

View file

@ -0,0 +1,34 @@
class LearnSchedule:
def __init__(self, learn_rate, max_steps, cur_step=0):
pairs = learn_rate.split(',')
self.rates = []
self.it = 0
self.maxit = 0
for i, pair in enumerate(pairs):
tmp = pair.split(':')
if len(tmp) == 2:
step = int(tmp[1])
if step > cur_step:
self.rates.append((float(tmp[0]), min(step, max_steps)))
self.maxit += 1
if step > max_steps:
return
elif step == -1:
self.rates.append((float(tmp[0]), max_steps))
self.maxit += 1
return
else:
self.rates.append((float(tmp[0]), max_steps))
self.maxit += 1
return
def __iter__(self):
return self
def __next__(self):
if self.it < self.maxit:
self.it += 1
return self.rates[self.it - 1]
else:
raise StopIteration

View file

@ -3,11 +3,14 @@ from PIL import Image, ImageOps
import platform
import sys
import tqdm
import time
from modules import shared, images
from modules.shared import opts, cmd_opts
if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption):
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
width = process_width
height = process_height
src = os.path.abspath(process_src)
@ -25,10 +28,21 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
if process_caption:
shared.interrogator.load()
if process_caption_deepbooru:
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, opts.deepbooru_sort_alpha)
def save_pic_with_caption(image, index):
if process_caption:
caption = "-" + shared.interrogator.generate_caption(image)
caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png")
elif process_caption_deepbooru:
shared.deepbooru_process_return["value"] = -1
shared.deepbooru_process_queue.put(image)
while shared.deepbooru_process_return["value"] == -1:
time.sleep(0.2)
caption = "-" + shared.deepbooru_process_return["value"]
caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png")
shared.deepbooru_process_return["value"] = -1
else:
caption = filename
caption = os.path.splitext(caption)[0]
@ -46,7 +60,10 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0]
filename = os.path.join(src, imagefile)
try:
img = Image.open(filename).convert("RGB")
except Exception:
continue
if shared.state.interrupted:
break
@ -80,6 +97,10 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
if process_caption:
shared.interrogator.send_blip_to_ram()
if process_caption_deepbooru:
deepbooru.release_process()
def sanitize_caption(base_path, original_caption, suffix):
operating_system = platform.system().lower()
if (operating_system == "windows"):

View file

@ -10,6 +10,7 @@ import datetime
from modules import shared, devices, sd_hijack, processing, sd_models
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnSchedule
class Embedding:
@ -189,8 +190,6 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
embedding = hijack.embedding_db.word_embeddings[embedding_name]
embedding.vec.requires_grad = True
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
losses = torch.zeros((32,))
last_saved_file = "<none>"
@ -200,15 +199,24 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if ititial_step > steps:
return embedding, filename
tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)])
epoch_len = (tr_img_len * num_repeats) + tr_img_len
schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
(learn_rate, end_step) = next(schedules)
print(f'Training at rate of {learn_rate} until step {end_step}')
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
for i, (x, text) in pbar:
for i, (x, text, _) in pbar:
embedding.step = i + ititial_step
if embedding.step > steps:
if embedding.step > end_step:
try:
(learn_rate, end_step) = next(schedules)
except:
break
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
for pg in optimizer.param_groups:
pg['lr'] = learn_rate
if shared.state.interrupted:
break
@ -226,10 +234,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
loss.backward()
optimizer.step()
epoch_num = embedding.step // epoch_len
epoch_step = embedding.step - (epoch_num * epoch_len) + 1
epoch_num = embedding.step // len(ds)
epoch_step = embedding.step - (epoch_num * len(ds)) + 1
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}")
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}")
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
@ -278,4 +286,3 @@ Last saved image: {html.escape(last_saved_image)}<br/>
embedding.save(filename)
return embedding, filename

View file

@ -22,6 +22,9 @@ def preprocess(*args):
def train_embedding(*args):
assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'
try:
sd_hijack.undo_optimizations()

View file

@ -132,6 +132,8 @@ def save_files(js_data, images, do_make_zip, index):
images = [images[index]]
start_index = index
os.makedirs(opts.outdir_save, exist_ok=True)
with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file:
at_start = file.tell() == 0
writer = csv.writer(file)
@ -182,8 +184,15 @@ def wrap_gradio_call(func, extra_outputs=None):
try:
res = list(func(*args, **kwargs))
except Exception as e:
# When printing out our debug argument list, do not print out more than a MB of text
max_debug_str_len = 131072 # (1024*1024)/8
print("Error completing request", file=sys.stderr)
print("Arguments:", args, kwargs, file=sys.stderr)
argStr = f"Arguments: {str(args)} {str(kwargs)}"
print(argStr[:max_debug_str_len], file=sys.stderr)
if len(argStr) > max_debug_str_len:
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
shared.state.job = ""
@ -318,7 +327,7 @@ def interrogate(image):
def interrogate_deepbooru(image):
prompt = get_deepbooru_tags(image, opts.interrogate_deepbooru_score_threshold)
prompt = get_deepbooru_tags(image)
return gr_show(True) if prompt is None else prompt
@ -913,7 +922,15 @@ def create_ui(wrap_gradio_gpu_call):
with gr.TabItem('Batch Process'):
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file")
with gr.Tabs(elem_id="extras_resize_mode"):
with gr.TabItem('Scale by'):
upscaling_resize = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Resize", value=2)
with gr.TabItem('Scale to'):
with gr.Group():
with gr.Row():
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0)
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0)
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True)
with gr.Group():
extras_upscaler_1 = gr.Radio(label='Upscaler 1', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
@ -944,6 +961,7 @@ def create_ui(wrap_gradio_gpu_call):
fn=wrap_gradio_gpu_call(modules.extras.run_extras),
_js="get_extras_tab_index",
inputs=[
dummy_component,
dummy_component,
extras_image,
image_batch,
@ -951,6 +969,9 @@ def create_ui(wrap_gradio_gpu_call):
codeformer_visibility,
codeformer_weight,
upscaling_resize,
upscaling_resize_w,
upscaling_resize_h,
upscaling_crop,
extras_upscaler_1,
extras_upscaler_2,
extras_upscaler_2_visibility,
@ -1015,14 +1036,14 @@ def create_ui(wrap_gradio_gpu_call):
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
with gr.Blocks() as textual_inversion_interface:
with gr.Blocks() as train_interface:
with gr.Row().style(equal_height=False):
with gr.Column():
with gr.Group():
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>")
gr.HTML(value="<p style='margin-bottom: 0.7em'>Create a new embedding</p>")
with gr.Row().style(equal_height=False):
with gr.Tabs(elem_id="train_tabs"):
with gr.Tab(label="Create embedding"):
new_embedding_name = gr.Textbox(label="Name")
initialization_text = gr.Textbox(label="Initialization text", value="*")
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1)
@ -1034,10 +1055,9 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
with gr.Group():
gr.HTML(value="<p style='margin-bottom: 0.7em'>Create a new hypernetwork</p>")
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
with gr.Row():
with gr.Column(scale=3):
@ -1046,9 +1066,7 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
with gr.Group():
gr.HTML(value="<p style='margin-bottom: 0.7em'>Preprocess images</p>")
with gr.Tab(label="Preprocess images"):
process_src = gr.Textbox(label='Source directory')
process_dst = gr.Textbox(label='Destination directory')
process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
@ -1058,6 +1076,10 @@ def create_ui(wrap_gradio_gpu_call):
process_flip = gr.Checkbox(label='Create flipped copies')
process_split = gr.Checkbox(label='Split oversized images into two')
process_caption = gr.Checkbox(label='Use BLIP caption as filename')
if cmd_opts.deepdanbooru:
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru caption as filename')
else:
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru caption as filename', visible=False)
with gr.Row():
with gr.Column(scale=3):
@ -1066,11 +1088,11 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
run_preprocess = gr.Button(value="Preprocess", variant='primary')
with gr.Group():
with gr.Tab(label="Train"):
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>")
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
learn_rate = gr.Number(label='Learning rate', value=5.0e-03)
learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
@ -1115,6 +1137,7 @@ def create_ui(wrap_gradio_gpu_call):
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
new_hypernetwork_name,
new_hypernetwork_sizes,
],
outputs=[
train_hypernetwork_name,
@ -1134,6 +1157,7 @@ def create_ui(wrap_gradio_gpu_call):
process_flip,
process_split,
process_caption,
process_caption_deepbooru
],
outputs=[
ti_output,
@ -1353,6 +1377,7 @@ Requested path was: {f}
shared.state.interrupt()
settings_interface.gradio_ref.do_restart = True
restart_gradio.click(
fn=request_restart,
inputs=[],
@ -1369,8 +1394,8 @@ Requested path was: {f}
(extras_interface, "Extras", "extras"),
(pnginfo_interface, "PNG Info", "pnginfo"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
(textual_inversion_interface, "Textual inversion", "ti"),
(images_history, "History", "images_history"),
(train_interface, "Train", "ti"),
(settings_interface, "Settings", "settings"),
]

View file

@ -4,7 +4,7 @@ fairscale==0.4.4
fonts
font-roboto
gfpgan
gradio==3.4b3
gradio==3.4.1
invisible-watermark
numpy
omegaconf

View file

@ -2,7 +2,7 @@ transformers==4.19.2
diffusers==0.3.0
basicsr==1.4.2
gfpgan==1.3.8
gradio==3.4b3
gradio==3.4.1
numpy==1.23.3
Pillow==9.2.0
realesrgan==0.3.0

View file

@ -129,8 +129,6 @@ class Script(scripts.Script):
return [original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment]
def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment):
p.batch_size = 1
p.batch_count = 1
def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
@ -154,7 +152,7 @@ class Script(scripts.Script):
rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])])
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)

View file

@ -77,14 +77,42 @@ def apply_sampler(p, x, xs):
p.sampler_index = sampler_index
def confirm_samplers(p, xs):
samplers_dict = build_samplers_dict(p)
for x in xs:
if x.lower() not in samplers_dict.keys():
raise RuntimeError(f"Unknown sampler: {x}")
def apply_checkpoint(p, x, xs):
info = modules.sd_models.get_closet_checkpoint_match(x)
assert info is not None, f'Checkpoint for {x} not found'
if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
modules.sd_models.reload_model_weights(shared.sd_model, info)
def confirm_checkpoints(p, xs):
for x in xs:
if modules.sd_models.get_closet_checkpoint_match(x) is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
def apply_hypernetwork(p, x, xs):
hypernetwork.load_hypernetwork(x)
if x.lower() in ["", "none"]:
name = None
else:
name = hypernetwork.find_closest_hypernetwork_name(x)
if not name:
raise RuntimeError(f"Unknown hypernetwork: {x}")
hypernetwork.load_hypernetwork(name)
def confirm_hypernetworks(p, xs):
for x in xs:
if x.lower() in ["", "none"]:
continue
if not hypernetwork.find_closest_hypernetwork_name(x):
raise RuntimeError(f"Unknown hypernetwork: {x}")
def apply_clip_skip(p, x, xs):
@ -121,29 +149,29 @@ def str_permutations(x):
return x
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value"])
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value"])
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm"])
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm"])
axis_options = [
AxisOption("Nothing", str, do_nothing, format_nothing),
AxisOption("Seed", int, apply_field("seed"), format_value_add_label),
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label),
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label),
AxisOption("Steps", int, apply_field("steps"), format_value_add_label),
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label),
AxisOption("Prompt S/R", str, apply_prompt, format_value),
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list),
AxisOption("Sampler", str, apply_sampler, format_value),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value),
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value),
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label),
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label),
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label),
AxisOption("Eta", float, apply_field("eta"), format_value_add_label),
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label),
AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label), # as it is now all AxisOptionImg2Img items must go after AxisOption ones
AxisOption("Nothing", str, do_nothing, format_nothing, None),
AxisOption("Seed", int, apply_field("seed"), format_value_add_label, None),
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label, None),
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label, None),
AxisOption("Steps", int, apply_field("steps"), format_value_add_label, None),
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label, None),
AxisOption("Prompt S/R", str, apply_prompt, format_value, None),
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list, None),
AxisOption("Sampler", str, apply_sampler, format_value, confirm_samplers),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value, confirm_checkpoints),
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value, confirm_hypernetworks),
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label, None),
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label, None),
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label, None),
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label, None),
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None), # as it is now all AxisOptionImg2Img items must go after AxisOption ones
]
@ -197,7 +225,7 @@ class Script(scripts.Script):
x_values = gr.Textbox(label="X values", visible=False, lines=1)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[4].label, visible=False, type="index", elem_id="y_type")
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[0].label, visible=False, type="index", elem_id="y_type")
y_values = gr.Textbox(label="Y values", visible=False, lines=1)
draw_legend = gr.Checkbox(label='Draw legend', value=True)
@ -271,15 +299,8 @@ class Script(scripts.Script):
valslist = [opt.type(x) for x in valslist]
# Confirm options are valid before starting
if opt.label == "Sampler":
samplers_dict = build_samplers_dict(p)
for sampler_val in valslist:
if sampler_val.lower() not in samplers_dict.keys():
raise RuntimeError(f"Unknown sampler: {sampler_val}")
elif opt.label == "Checkpoint name":
for ckpt_val in valslist:
if modules.sd_models.get_closet_checkpoint_match(ckpt_val) is None:
raise RuntimeError(f"Checkpoint for {ckpt_val} not found")
if opt.confirm:
opt.confirm(p, valslist)
return valslist

View file

@ -240,6 +240,7 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s
#settings fieldset span.text-gray-500, #settings .gr-block.gr-box span.text-gray-500, #settings label.block span{
position: relative;
border: none;
margin-right: 8em;
}
.gr-panel div.flex-col div.justify-between label span{
@ -495,3 +496,13 @@ canvas[key="mask"] {
mix-blend-mode: multiply;
pointer-events: none;
}
/* gradio 3.4.1 stuff for editable scrollbar values */
.gr-box > div > div > input.gr-text-input{
position: absolute;
right: 0.5em;
top: -0.6em;
z-index: 200;
width: 8em;
}

View file

@ -31,12 +31,7 @@ from modules.paths import script_path
from modules.shared import cmd_opts
import modules.hypernetworks.hypernetwork
modelloader.cleanup_models()
modules.sd_models.setup_model()
codeformer.setup_model(cmd_opts.codeformer_models_path)
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
modelloader.load_upscalers()
queue_lock = threading.Lock()
@ -78,15 +73,24 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
def initialize():
modelloader.cleanup_models()
modules.sd_models.setup_model()
codeformer.setup_model(cmd_opts.codeformer_models_path)
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
modelloader.load_upscalers()
modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
shared.sd_model = modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
def webui():
initialize()
# make the program just exit at ctrl+c without waiting for anything
def sigint_handler(sig, frame):
print(f'Interrupted with signal {sig} in {frame}')
@ -124,9 +128,10 @@ def webui():
modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
print('Reloading modules: modules.ui')
importlib.reload(modules.ui)
print('Refreshing Model List')
modules.sd_models.list_models()
print('Restarting Gradio')
if __name__ == "__main__":
webui()