This commit is contained in:
AUTOMATIC 2022-09-10 12:06:19 +03:00
parent ef0cdb8a42
commit c92f2ff196
2 changed files with 39 additions and 11 deletions

View file

@ -279,7 +279,8 @@ After that follow the instructions in the `Manual instructions` section starting
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git - k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- GFPGAN - https://github.com/TencentARC/GFPGAN.git - GFPGAN - https://github.com/TencentARC/GFPGAN.git
- ESRGAN - https://github.com/xinntao/ESRGAN - ESRGAN - https://github.com/xinntao/ESRGAN
- Ideas for optimizations and some code (from users) - https://github.com/basujindal/stable-diffusion - Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You) - (You)

View file

@ -1,3 +1,4 @@
import math
import os import os
import sys import sys
import traceback import traceback
@ -12,30 +13,56 @@ from einops import rearrange
import ldm.modules.attention import ldm.modules.attention
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion # taken from https://github.com/Doggettx/stable-diffusion
def split_cross_attention_forward(self, x, context=None, mask=None): def split_cross_attention_forward(self, x, context=None, mask=None):
h = self.heads h = self.heads
q = self.to_q(x) q_in = self.to_q(x)
context = default(context, x) context = default(context, x)
k = self.to_k(context) k_in = self.to_k(context)
v = self.to_v(context) v_in = self.to_v(context)
del context, x del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
for i in range(0, q.shape[0], 2):
end = i + 2 stats = torch.cuda.memory_stats(q.device)
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) mem_active = stats['active_bytes.all.current']
s1 *= self.scale mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * 4
mem_required = tensor_size * 2.5
steps = 1
if mem_required > mem_free_total:
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale
s2 = s1.softmax(dim=-1) s2 = s1.softmax(dim=-1)
del s1 del s1
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2 del s2
del q, k, v
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1 del r1