Merge pull request #6803 from space-nuko/xy-grid-performance-improvement

Optimize XY grid to run slower axes fewer times
This commit is contained in:
AUTOMATIC1111 2023-01-16 16:14:41 +03:00 committed by GitHub
commit d073637e10
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -178,56 +178,58 @@ def str_permutations(x):
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
return x
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm"])
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm"])
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm", "cost"])
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm", "cost"])
axis_options = [
AxisOption("Nothing", str, do_nothing, format_nothing, None),
AxisOption("Seed", int, apply_field("seed"), format_value_add_label, None),
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label, None),
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label, None),
AxisOption("Steps", int, apply_field("steps"), format_value_add_label, None),
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label, None),
AxisOption("Prompt S/R", str, apply_prompt, format_value, None),
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list, None),
AxisOption("Sampler", str, apply_sampler, format_value, confirm_samplers),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value, confirm_checkpoints),
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value, confirm_hypernetworks),
AxisOption("Hypernet str.", float, apply_hypernetwork_strength, format_value_add_label, None),
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label, None),
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label, None),
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label, None),
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label, None),
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None),
AxisOption("Hires upscaler", str, apply_field("hr_upscaler"), format_value_add_label, None),
AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None),
AxisOption("VAE", str, apply_vae, format_value_add_label, None),
AxisOption("Styles", str, apply_styles, format_value_add_label, None),
AxisOption("Nothing", str, do_nothing, format_nothing, None, 0),
AxisOption("Seed", int, apply_field("seed"), format_value_add_label, None, 0),
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label, None, 0),
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label, None, 0),
AxisOption("Steps", int, apply_field("steps"), format_value_add_label, None, 0),
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label, None, 0),
AxisOption("Prompt S/R", str, apply_prompt, format_value, None, 0),
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list, None, 0),
AxisOption("Sampler", str, apply_sampler, format_value, confirm_samplers, 0),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value, confirm_checkpoints, 1.0),
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value, confirm_hypernetworks, 0.2),
AxisOption("Hypernet str.", float, apply_hypernetwork_strength, format_value_add_label, None, 0),
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label, None, 0),
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label, None, 0),
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label, None, 0),
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label, None, 0),
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None, 0),
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None, 0),
AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None, 0),
AxisOption("Hires upscaler", str, apply_field("hr_upscaler"), format_value_add_label, None, 0),
AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None, 0),
AxisOption("VAE", str, apply_vae, format_value_add_label, None, 0.7),
AxisOption("Styles", str, apply_styles, format_value_add_label, None, 0),
]
def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_images):
def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_images, swap_axes_processing_order):
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
# Temporary list of all the images that are generated to be populated into the grid.
# Will be filled with empty images for any individual step that fails to process properly
image_cache = []
image_cache = [None] * (len(xs) * len(ys))
processed_result = None
cell_mode = "P"
cell_size = (1,1)
cell_size = (1, 1)
state.job_count = len(xs) * len(ys) * p.n_iter
for iy, y in enumerate(ys):
for ix, x in enumerate(xs):
def process_cell(x, y, ix, iy):
nonlocal image_cache, processed_result, cell_mode, cell_size
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
processed:Processed = cell(x, y)
processed: Processed = cell(x, y)
try:
# this dereference will throw an exception if the image was not processed
# (this happens in cases such as if the user stops the process from the UI)
@ -240,14 +242,23 @@ def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_
cell_size = processed_image.size
processed_result.images = [Image.new(cell_mode, cell_size)]
image_cache.append(processed_image)
image_cache[ix + iy * len(xs)] = processed_image
if include_lone_images:
processed_result.images.append(processed_image)
processed_result.all_prompts.append(processed.prompt)
processed_result.all_seeds.append(processed.seed)
processed_result.infotexts.append(processed.infotexts[0])
except:
image_cache.append(Image.new(cell_mode, cell_size))
image_cache[ix + iy * len(xs)] = Image.new(cell_mode, cell_size)
if swap_axes_processing_order:
for ix, x in enumerate(xs):
for iy, y in enumerate(ys):
process_cell(x, y, ix, iy)
else:
for iy, y in enumerate(ys):
for ix, x in enumerate(xs):
process_cell(x, y, ix, iy)
if not processed_result:
print("Unexpected error: draw_xy_grid failed to return even a single processed image")
@ -417,6 +428,11 @@ class Script(scripts.Script):
grid_infotext = [None]
# If one of the axes is very slow to change between (like SD model
# checkpoint), then make sure it is in the outer iteration of the nested
# `for` loop.
swap_axes_processing_order = x_opt.cost > y_opt.cost
def cell(x, y):
if shared.state.interrupted:
return Processed(p, [], p.seed, "")
@ -455,7 +471,8 @@ class Script(scripts.Script):
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
cell=cell,
draw_legend=draw_legend,
include_lone_images=include_lone_images
include_lone_images=include_lone_images,
swap_axes_processing_order=swap_axes_processing_order
)
if opts.grid_save: