diff --git a/.github/workflows/on_pull_request.yaml b/.github/workflows/on_pull_request.yaml new file mode 100644 index 00000000..5270cba4 --- /dev/null +++ b/.github/workflows/on_pull_request.yaml @@ -0,0 +1,36 @@ +# See https://github.com/actions/starter-workflows/blob/1067f16ad8a1eac328834e4b0ae24f7d206f810d/ci/pylint.yml for original reference file +name: Run Linting/Formatting on Pull Requests + +on: + - push + - pull_request + # See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#onpull_requestpull_request_targetbranchesbranches-ignore for syntax docs + # if you want to filter out branches, delete the `- pull_request` and uncomment these lines : + # pull_request: + # branches: + # - master + # branches-ignore: + # - development + +jobs: + lint: + runs-on: ubuntu-latest + steps: + - name: Checkout Code + uses: actions/checkout@v3 + - name: Set up Python 3.10 + uses: actions/setup-python@v3 + with: + python-version: 3.10.6 + - name: Install PyLint + run: | + python -m pip install --upgrade pip + pip install pylint + # This lets PyLint check to see if it can resolve imports + - name: Install dependencies + run : | + export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit" + python launch.py + - name: Analysing the code with pylint + run: | + pylint $(git ls-files '*.py') diff --git a/.pylintrc b/.pylintrc new file mode 100644 index 00000000..53254e5d --- /dev/null +++ b/.pylintrc @@ -0,0 +1,3 @@ +# See https://pylint.pycqa.org/en/latest/user_guide/messages/message_control.html +[MESSAGES CONTROL] +disable=C,R,W,E,I diff --git a/javascript/dragdrop.js b/javascript/dragdrop.js index fe0185a5..070cf255 100644 --- a/javascript/dragdrop.js +++ b/javascript/dragdrop.js @@ -43,7 +43,7 @@ function dropReplaceImage( imgWrap, files ) { window.document.addEventListener('dragover', e => { const target = e.composedPath()[0]; const imgWrap = target.closest('[data-testid="image"]'); - if ( !imgWrap && target.placeholder != "Prompt") { + if ( !imgWrap && target.placeholder.indexOf("Prompt") == -1) { return; } e.stopPropagation(); @@ -53,7 +53,7 @@ window.document.addEventListener('dragover', e => { window.document.addEventListener('drop', e => { const target = e.composedPath()[0]; - if (target.placeholder === "Prompt") { + if (target.placeholder.indexOf("Prompt") == -1) { return; } const imgWrap = target.closest('[data-testid="image"]'); diff --git a/javascript/edit-attention.js b/javascript/edit-attention.js index 3f1d2fbb..67084e7a 100644 --- a/javascript/edit-attention.js +++ b/javascript/edit-attention.js @@ -2,6 +2,8 @@ addEventListener('keydown', (event) => { let target = event.originalTarget || event.composedPath()[0]; if (!target.hasAttribute("placeholder")) return; if (!target.placeholder.toLowerCase().includes("prompt")) return; + if (! (event.metaKey || event.ctrlKey)) return; + let plus = "ArrowUp" let minus = "ArrowDown" diff --git a/javascript/hints.js b/javascript/hints.js index 8fec907d..b98012f5 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -16,6 +16,8 @@ titles = { "\u{1f3a8}": "Add a random artist to the prompt.", "\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.", "\u{1f4c2}": "Open images output directory", + "\u{1f4be}": "Save style", + "\u{1f4cb}": "Apply selected styles to current prompt", "Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt", "SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back", diff --git a/javascript/imageParams.js b/javascript/imageParams.js index 4a7b0900..67404a89 100644 --- a/javascript/imageParams.js +++ b/javascript/imageParams.js @@ -2,7 +2,7 @@ window.onload = (function(){ window.addEventListener('drop', e => { const target = e.composedPath()[0]; const idx = selected_gallery_index(); - if (target.placeholder != "Prompt") return; + if (target.placeholder.indexOf("Prompt") == -1) return; let prompt_target = get_tab_index('tabs') == 1 ? "img2img_prompt_image" : "txt2img_prompt_image"; diff --git a/javascript/progressbar.js b/javascript/progressbar.js index 4395a215..076f0a97 100644 --- a/javascript/progressbar.js +++ b/javascript/progressbar.js @@ -1,5 +1,7 @@ // code related to showing and updating progressbar shown as the image is being made global_progressbars = {} +galleries = {} +galleryObservers = {} function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip, id_interrupt, id_preview, id_gallery){ var progressbar = gradioApp().getElementById(id_progressbar) @@ -31,13 +33,24 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip preview.style.width = gallery.clientWidth + "px" preview.style.height = gallery.clientHeight + "px" + //only watch gallery if there is a generation process going on + check_gallery(id_gallery); + var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0; if(!progressDiv){ if (skip) { skip.style.display = "none" } interrupt.style.display = "none" + + //disconnect observer once generation finished, so user can close selected image if they want + if (galleryObservers[id_gallery]) { + galleryObservers[id_gallery].disconnect(); + galleries[id_gallery] = null; + } } + + } window.setTimeout(function() { requestMoreProgress(id_part, id_progressbar_span, id_skip, id_interrupt) }, 500) @@ -46,6 +59,28 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip } } +function check_gallery(id_gallery){ + let gallery = gradioApp().getElementById(id_gallery) + // if gallery has no change, no need to setting up observer again. + if (gallery && galleries[id_gallery] !== gallery){ + galleries[id_gallery] = gallery; + if(galleryObservers[id_gallery]){ + galleryObservers[id_gallery].disconnect(); + } + let prevSelectedIndex = selected_gallery_index(); + galleryObservers[id_gallery] = new MutationObserver(function (){ + let galleryButtons = gradioApp().querySelectorAll('#'+id_gallery+' .gallery-item') + let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2') + if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) { + //automatically re-open previously selected index (if exists) + galleryButtons[prevSelectedIndex].click(); + showGalleryImage(); + } + }) + galleryObservers[id_gallery].observe( gallery, { childList:true, subtree:false }) + } +} + onUiUpdate(function(){ check_progressbar('txt2img', 'txt2img_progressbar', 'txt2img_progress_span', 'txt2img_skip', 'txt2img_interrupt', 'txt2img_preview', 'txt2img_gallery') check_progressbar('img2img', 'img2img_progressbar', 'img2img_progress_span', 'img2img_skip', 'img2img_interrupt', 'img2img_preview', 'img2img_gallery') diff --git a/javascript/ui.js b/javascript/ui.js index 0f8fe68e..9e1bed4c 100644 --- a/javascript/ui.js +++ b/javascript/ui.js @@ -141,7 +141,7 @@ function submit_img2img(){ function ask_for_style_name(_, prompt_text, negative_prompt_text) { name_ = prompt('Style name:') - return name_ === null ? [null, null, null]: [name_, prompt_text, negative_prompt_text] + return [name_, prompt_text, negative_prompt_text] } @@ -187,12 +187,10 @@ onUiUpdate(function(){ if (!txt2img_textarea) { txt2img_textarea = gradioApp().querySelector("#txt2img_prompt > label > textarea"); txt2img_textarea?.addEventListener("input", () => update_token_counter("txt2img_token_button")); - txt2img_textarea?.addEventListener("keyup", (event) => submit_prompt(event, "txt2img_generate")); } if (!img2img_textarea) { img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea"); img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button")); - img2img_textarea?.addEventListener("keyup", (event) => submit_prompt(event, "img2img_generate")); } }) @@ -220,14 +218,6 @@ function update_token_counter(button_id) { token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time); } -function submit_prompt(event, generate_button_id) { - if (event.altKey && event.keyCode === 13) { - event.preventDefault(); - gradioApp().getElementById(generate_button_id).click(); - return; - } -} - function restart_reload(){ document.body.innerHTML='

Reloading...

'; setTimeout(function(){location.reload()},2000) diff --git a/launch.py b/launch.py index a7c5807b..2e6b3369 100644 --- a/launch.py +++ b/launch.py @@ -9,6 +9,7 @@ import platform dir_repos = "repositories" python = sys.executable git = os.environ.get('GIT', "git") +index_url = os.environ.get('INDEX_URL', "") def extract_arg(args, name): @@ -57,7 +58,8 @@ def run_python(code, desc=None, errdesc=None): def run_pip(args, desc=None): - return run(f'"{python}" -m pip {args} --prefer-binary', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}") + index_url_line = f' --index-url {index_url}' if index_url != '' else '' + return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}") def check_run_python(code): @@ -102,6 +104,7 @@ def prepare_enviroment(): args = shlex.split(commandline_args) args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test') + args, reinstall_xformers = extract_arg(args, '--reinstall-xformers') xformers = '--xformers' in args deepdanbooru = '--deepdanbooru' in args ngrok = '--ngrok' in args @@ -126,9 +129,9 @@ def prepare_enviroment(): if not is_installed("clip"): run_pip(f"install {clip_package}", "clip") - if not is_installed("xformers") and xformers and platform.python_version().startswith("3.10"): + if (not is_installed("xformers") or reinstall_xformers) and xformers and platform.python_version().startswith("3.10"): if platform.system() == "Windows": - run_pip("install https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/c/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl", "xformers") + run_pip("install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl", "xformers") elif platform.system() == "Linux": run_pip("install xformers", "xformers") diff --git a/modules/deepbooru.py b/modules/deepbooru.py index f34f3788..4ad334a1 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -102,7 +102,7 @@ def get_deepbooru_tags_model(): tags = dd.project.load_tags_from_project(model_path) model = dd.project.load_model_from_project( - model_path, compile_model=True + model_path, compile_model=False ) return model, tags diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 59c7ac6e..4905710e 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -182,7 +182,21 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): return self.to_out(out) -def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def stack_conds(conds): + if len(conds) == 1: + return torch.stack(conds) + + # same as in reconstruct_multicond_batch + token_count = max([x.shape[0] for x in conds]) + for i in range(len(conds)): + if conds[i].shape[0] != token_count: + last_vector = conds[i][-1:] + last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1]) + conds[i] = torch.vstack([conds[i], last_vector_repeated]) + + return torch.stack(conds) + +def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert hypernetwork_name, 'hypernetwork not selected' path = shared.hypernetworks.get(hypernetwork_name, None) @@ -211,7 +225,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) if unload: shared.sd_model.cond_stage_model.to(devices.cpu) @@ -235,7 +249,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) - for i, entry in pbar: + for i, entries in pbar: hypernetwork.step = i + ititial_step scheduler.apply(optimizer, hypernetwork.step) @@ -246,26 +260,29 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, break with torch.autocast("cuda"): - cond = entry.cond.to(devices.device) - x = entry.latent.to(devices.device) - loss = shared.sd_model(x.unsqueeze(0), cond)[0] + c = stack_conds([entry.cond for entry in entries]).to(devices.device) +# c = torch.vstack([entry.cond for entry in entries]).to(devices.device) + x = torch.stack([entry.latent for entry in entries]).to(devices.device) + loss = shared.sd_model(x, c)[0] del x - del cond + del c losses[hypernetwork.step % losses.shape[0]] = loss.item() optimizer.zero_grad() loss.backward() optimizer.step() - - pbar.set_description(f"loss: {losses.mean():.7f}") + mean_loss = losses.mean() + if torch.isnan(mean_loss): + raise RuntimeError("Loss diverged.") + pbar.set_description(f"loss: {mean_loss:.7f}") if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') hypernetwork.save(last_saved_file) textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { - "loss": f"{losses.mean():.7f}", + "loss": f"{mean_loss:.7f}", "learn_rate": scheduler.learn_rate }) @@ -292,7 +309,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, p.width = preview_width p.height = preview_height else: - p.prompt = entry.cond_text + p.prompt = entries[0].cond_text p.steps = 20 preview_text = p.prompt @@ -313,9 +330,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, shared.state.textinfo = f"""

-Loss: {losses.mean():.7f}
+Loss: {mean_loss:.7f}
Step: {hypernetwork.step}
-Last prompt: {html.escape(entry.cond_text)}
+Last prompt: {html.escape(entries[0].cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

diff --git a/modules/images_history.py b/modules/images_history.py index f5ef44fe..9260df8a 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -97,14 +97,16 @@ def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, ima def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): - if tabname == "txt2img": + if opts.outdir_samples != "": + dir_name = opts.outdir_samples + elif tabname == "txt2img": dir_name = opts.outdir_txt2img_samples elif tabname == "img2img": dir_name = opts.outdir_img2img_samples elif tabname == "extras": dir_name = opts.outdir_extras_samples d = dir_name.split("/") - dir_name = d[0] + dir_name = "/" if dir_name.startswith("/") else d[0] for p in d[1:]: dir_name = os.path.join(dir_name, p) with gr.Row(): diff --git a/modules/processing.py b/modules/processing.py index a75b9f84..941ae089 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -140,7 +140,7 @@ class Processed: self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0] self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0] - self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) + self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1 self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1 self.all_prompts = all_prompts or [self.prompt] @@ -528,7 +528,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): firstphase_height_truncated = int(scale * self.height) else: - self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}" width_ratio = self.width / self.firstphase_width height_ratio = self.height / self.firstphase_height @@ -540,6 +539,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): firstphase_width_truncated = self.firstphase_height * self.width / self.height firstphase_height_truncated = self.firstphase_height + self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}" self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f @@ -557,11 +557,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2] - decoded_samples = decode_first_stage(self.sd_model, samples) + if opts.use_scale_latent_for_hires_fix: + samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") - if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None": - decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear") else: + decoded_samples = decode_first_stage(self.sd_model, samples) lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) batch_images = [] @@ -578,7 +578,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): decoded_samples = decoded_samples.to(shared.device) decoded_samples = 2. * decoded_samples - 1. - samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) + samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) shared.state.nextjob() diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index c81722a0..984b35c4 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -24,7 +24,7 @@ def apply_optimizations(): ldm.modules.diffusionmodules.model.nonlinearity = silu - if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (8, 6)): + if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): print("Applying xformers cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward diff --git a/modules/sd_models.py b/modules/sd_models.py index 3a01c93d..3aa21ec1 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -1,4 +1,4 @@ -import glob +import collections import os.path import sys from collections import namedtuple @@ -15,6 +15,7 @@ model_path = os.path.abspath(os.path.join(models_path, model_dir)) CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config']) checkpoints_list = {} +checkpoints_loaded = collections.OrderedDict() try: # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. @@ -132,41 +133,45 @@ def load_model_weights(model, checkpoint_info): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash - print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") + if checkpoint_info not in checkpoints_loaded: + print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") - pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) + pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) + if "global_step" in pl_sd: + print(f"Global Step: {pl_sd['global_step']}") - if "global_step" in pl_sd: - print(f"Global Step: {pl_sd['global_step']}") + sd = get_state_dict_from_checkpoint(pl_sd) + model.load_state_dict(sd, strict=False) - sd = get_state_dict_from_checkpoint(pl_sd) + if shared.cmd_opts.opt_channelslast: + model.to(memory_format=torch.channels_last) - model.load_state_dict(sd, strict=False) + if not shared.cmd_opts.no_half: + model.half() - if shared.cmd_opts.opt_channelslast: - model.to(memory_format=torch.channels_last) + devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 + devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - if not shared.cmd_opts.no_half: - model.half() + vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt" - devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 - devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 + if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None: + vae_file = shared.cmd_opts.vae_path - vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt" + if os.path.exists(vae_file): + print(f"Loading VAE weights from: {vae_file}") + vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) + vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"} + model.first_stage_model.load_state_dict(vae_dict) - if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None: - vae_file = shared.cmd_opts.vae_path + model.first_stage_model.to(devices.dtype_vae) - if os.path.exists(vae_file): - print(f"Loading VAE weights from: {vae_file}") - - vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) - - vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"} - - model.first_stage_model.load_state_dict(vae_dict) - - model.first_stage_model.to(devices.dtype_vae) + checkpoints_loaded[checkpoint_info] = model.state_dict().copy() + while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: + checkpoints_loaded.popitem(last=False) # LRU + else: + print(f"Loading weights [{sd_model_hash}] from cache") + checkpoints_loaded.move_to_end(checkpoint_info) + model.load_state_dict(checkpoints_loaded[checkpoint_info]) model.sd_model_hash = sd_model_hash model.sd_model_checkpoint = checkpoint_file @@ -205,6 +210,7 @@ def reload_model_weights(sd_model, info=None): return if sd_model.sd_checkpoint_info.config != checkpoint_info.config: + checkpoints_loaded.clear() shared.sd_model = load_model() return shared.sd_model diff --git a/modules/shared.py b/modules/shared.py index d41a7ab3..fa30bbb0 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -218,6 +218,7 @@ options_templates.update(options_section(('upscaling', "Upscaling"), { "SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), + "use_scale_latent_for_hires_fix": OptionInfo(False, "Upscale latent space image when doing hires. fix"), })) options_templates.update(options_section(('face-restoration', "Face restoration"), { @@ -242,6 +243,7 @@ options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models), + "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), @@ -255,7 +257,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "filter_nsfw": OptionInfo(False, "Filter NSFW content"), 'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), - 'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"), })) options_templates.update(options_section(('interrogate', "Interrogate Options"), { @@ -283,6 +284,7 @@ options_templates.update(options_section(('ui', "User interface"), { "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."), + 'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"), })) options_templates.update(options_section(('sampler-params', "Sampler parameters"), { diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 67e90afe..23bb4b6a 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -24,11 +24,12 @@ class DatasetEntry: class PersonalizedBase(Dataset): - def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False): - re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex)>0 else None + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1): + re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None self.placeholder_token = placeholder_token + self.batch_size = batch_size self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) @@ -78,13 +79,14 @@ class PersonalizedBase(Dataset): if include_cond: entry.cond_text = self.create_text(filename_text) - entry.cond = cond_model([entry.cond_text]).to(devices.cpu) + entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0) self.dataset.append(entry) - self.length = len(self.dataset) * repeats + assert len(self.dataset) > 1, "No images have been found in the dataset." + self.length = len(self.dataset) * repeats // batch_size - self.initial_indexes = np.arange(self.length) % len(self.dataset) + self.initial_indexes = np.arange(len(self.dataset)) self.indexes = None self.shuffle() @@ -101,13 +103,19 @@ class PersonalizedBase(Dataset): return self.length def __getitem__(self, i): - if i % len(self.dataset) == 0: - self.shuffle() + res = [] - index = self.indexes[i % len(self.indexes)] - entry = self.dataset[index] + for j in range(self.batch_size): + position = i * self.batch_size + j + if position % len(self.indexes) == 0: + self.shuffle() - if entry.cond is None: - entry.cond_text = self.create_text(entry.filename_text) + index = self.indexes[position % len(self.indexes)] + entry = self.dataset[index] - return entry + if entry.cond is None: + entry.cond_text = self.create_text(entry.filename_text) + + res.append(entry) + + return res diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index da0d77a0..2ed345b1 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -88,9 +88,9 @@ class EmbeddingDatabase: data = [] - if filename.upper().endswith('.PNG'): + if os.path.splitext(filename.upper())[-1] in ['.PNG', '.WEBP', '.JXL', '.AVIF']: embed_image = Image.open(path) - if 'sd-ti-embedding' in embed_image.text: + if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text: data = embedding_from_b64(embed_image.text['sd-ti-embedding']) name = data.get('name', name) else: @@ -199,7 +199,7 @@ def write_loss(log_directory, filename, step, epoch_len, values): }) -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -231,7 +231,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) hijack = sd_hijack.model_hijack @@ -242,6 +242,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini last_saved_file = "" last_saved_image = "" + embedding_yet_to_be_embedded = False ititial_step = embedding.step or 0 if ititial_step > steps: @@ -251,7 +252,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) - for i, entry in pbar: + for i, entries in pbar: embedding.step = i + ititial_step scheduler.apply(optimizer, embedding.step) @@ -262,10 +263,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini break with torch.autocast("cuda"): - c = cond_model([entry.cond_text]) - - x = entry.latent.to(devices.device) - loss = shared.sd_model(x.unsqueeze(0), c)[0] + c = cond_model([entry.cond_text for entry in entries]) + x = torch.stack([entry.latent for entry in entries]).to(devices.device) + loss = shared.sd_model(x, c)[0] del x losses[embedding.step % losses.shape[0]] = loss.item() @@ -282,6 +282,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') embedding.save(last_saved_file) + embedding_yet_to_be_embedded = True write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { "loss": f"{losses.mean():.7f}", @@ -307,7 +308,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini p.width = preview_width p.height = preview_height else: - p.prompt = entry.cond_text + p.prompt = entries[0].cond_text p.steps = 20 p.width = training_width p.height = training_height @@ -319,7 +320,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.current_image = image - if save_image_with_stored_embedding and os.path.exists(last_saved_file): + if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded: last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png') @@ -328,15 +329,22 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini info.add_text("sd-ti-embedding", embedding_to_b64(data)) title = "<{}>".format(data.get('name', '???')) + + try: + vectorSize = list(data['string_to_param'].values())[0].shape[0] + except Exception as e: + vectorSize = '?' + checkpoint = sd_models.select_checkpoint() footer_left = checkpoint.model_name footer_mid = '[{}]'.format(checkpoint.hash) - footer_right = '{}'.format(embedding.step) + footer_right = '{}v {}s'.format(vectorSize, embedding.step) captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) captioned_image = insert_image_data_embed(captioned_image, data) captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info) + embedding_yet_to_be_embedded = False image.save(last_saved_image) @@ -348,7 +356,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini

Loss: {losses.mean():.7f}
Step: {embedding.step}
-Last prompt: {html.escape(entry.cond_text)}
+Last prompt: {html.escape(entries[0].cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

diff --git a/modules/ui.py b/modules/ui.py index 1bc919c7..b867d40f 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -7,6 +7,7 @@ import mimetypes import os import random import sys +import tempfile import time import traceback import platform @@ -80,6 +81,8 @@ art_symbol = '\U0001f3a8' # 🎨 paste_symbol = '\u2199\ufe0f' # ↙ folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 +save_style_symbol = '\U0001f4be' # 💾 +apply_style_symbol = '\U0001f4cb' # 📋 def plaintext_to_html(text): @@ -88,6 +91,14 @@ def plaintext_to_html(text): def image_from_url_text(filedata): + if type(filedata) == dict and filedata["is_file"]: + filename = filedata["name"] + tempdir = os.path.normpath(tempfile.gettempdir()) + normfn = os.path.normpath(filename) + assert normfn.startswith(tempdir), 'trying to open image file not in temporary directory' + + return Image.open(filename) + if type(filedata) == list: if len(filedata) == 0: return None @@ -143,10 +154,7 @@ def save_files(js_data, images, do_make_zip, index): writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"]) for image_index, filedata in enumerate(images, start_index): - if filedata.startswith("data:image/png;base64,"): - filedata = filedata[len("data:image/png;base64,"):] - - image = Image.open(io.BytesIO(base64.decodebytes(filedata.encode('utf-8')))) + image = image_from_url_text(filedata) is_grid = image_index < p.index_of_first_image i = 0 if is_grid else (image_index - p.index_of_first_image) @@ -176,6 +184,23 @@ def save_files(js_data, images, do_make_zip, index): return gr.File.update(value=fullfns, visible=True), '', '', plaintext_to_html(f"Saved: {filenames[0]}") +def save_pil_to_file(pil_image, dir=None): + use_metadata = False + metadata = PngImagePlugin.PngInfo() + for key, value in pil_image.info.items(): + if isinstance(key, str) and isinstance(value, str): + metadata.add_text(key, value) + use_metadata = True + + file_obj = tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=dir) + pil_image.save(file_obj, pnginfo=(metadata if use_metadata else None)) + return file_obj + + +# override save to file function so that it also writes PNG info +gr.processing_utils.save_pil_to_file = save_pil_to_file + + def wrap_gradio_call(func, extra_outputs=None): def f(*args, extra_outputs_array=extra_outputs, **kwargs): run_memmon = opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled @@ -304,7 +329,7 @@ def visit(x, func, path=""): def add_style(name: str, prompt: str, negative_prompt: str): if name is None: - return [gr_show(), gr_show()] + return [gr_show() for x in range(4)] style = modules.styles.PromptStyle(name, prompt, negative_prompt) shared.prompt_styles.styles[style.name] = style @@ -429,29 +454,38 @@ def create_toprow(is_img2img): id_part = "img2img" if is_img2img else "txt2img" with gr.Row(elem_id="toprow"): - with gr.Column(scale=4): + with gr.Column(scale=6): with gr.Row(): with gr.Column(scale=80): with gr.Row(): - prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, placeholder="Prompt", lines=2) - with gr.Column(scale=1, elem_id="roll_col"): - roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0) - paste = gr.Button(value=paste_symbol, elem_id="paste") - token_counter = gr.HTML(value="", elem_id=f"{id_part}_token_counter") - token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button") - - with gr.Column(scale=10, elem_id="style_pos_col"): - prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1) + prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=2, + placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)" + ) with gr.Row(): - with gr.Column(scale=8): + with gr.Column(scale=80): with gr.Row(): - negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2) - with gr.Column(scale=1, elem_id="roll_col"): - sh = gr.Button(elem_id="sh", visible=True) + negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2, + placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)" + ) - with gr.Column(scale=1, elem_id="style_neg_col"): - prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1) + with gr.Column(scale=1, elem_id="roll_col"): + roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0) + paste = gr.Button(value=paste_symbol, elem_id="paste") + save_style = gr.Button(value=save_style_symbol, elem_id="style_create") + prompt_style_apply = gr.Button(value=apply_style_symbol, elem_id="style_apply") + + token_counter = gr.HTML(value="", elem_id=f"{id_part}_token_counter") + token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button") + + button_interrogate = None + button_deepbooru = None + if is_img2img: + with gr.Column(scale=1, elem_id="interrogate_col"): + button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate") + + if cmd_opts.deepdanbooru: + button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru") with gr.Column(scale=1): with gr.Row(): @@ -471,20 +505,14 @@ def create_toprow(is_img2img): outputs=[], ) - with gr.Row(scale=1): - if is_img2img: - interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate") - if cmd_opts.deepdanbooru: - deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru") - else: - deepbooru = None - else: - interrogate = None - deepbooru = None - prompt_style_apply = gr.Button('Apply style', elem_id="style_apply") - save_style = gr.Button('Create style', elem_id="style_create") + with gr.Row(): + with gr.Column(scale=1, elem_id="style_pos_col"): + prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys()))) - return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, interrogate, deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button + with gr.Column(scale=1, elem_id="style_neg_col"): + prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys()))) + + return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button def setup_progressbar(progressbar, preview, id_part, textinfo=None): @@ -588,7 +616,7 @@ def create_ui(wrap_gradio_gpu_call): txt2img_preview = gr.Image(elem_id='txt2img_preview', visible=False) txt2img_gallery = gr.Gallery(label='Output', show_label=False, elem_id='txt2img_gallery').style(grid=4) - with gr.Group(): + with gr.Column(): with gr.Row(): save = gr.Button('Save') send_to_img2img = gr.Button('Send to img2img') @@ -744,10 +772,10 @@ def create_ui(wrap_gradio_gpu_call): with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode: with gr.TabItem('img2img', id='img2img'): - init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool) + init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool).style(height=480) with gr.TabItem('Inpaint', id='inpaint'): - init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA") + init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA").style(height=480) init_img_inpaint = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_base") init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_mask") @@ -803,7 +831,7 @@ def create_ui(wrap_gradio_gpu_call): img2img_preview = gr.Image(elem_id='img2img_preview', visible=False) img2img_gallery = gr.Gallery(label='Output', show_label=False, elem_id='img2img_gallery').style(grid=4) - with gr.Group(): + with gr.Column(): with gr.Row(): save = gr.Button('Save') img2img_send_to_img2img = gr.Button('Send to img2img') @@ -1166,6 +1194,7 @@ def create_ui(wrap_gradio_gpu_call): train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()]) learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005") + batch_size = gr.Number(label='Batch size', value=1, precision=0) dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) @@ -1244,6 +1273,7 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ train_embedding_name, learn_rate, + batch_size, dataset_directory, log_directory, training_width, @@ -1268,6 +1298,7 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ train_hypernetwork_name, learn_rate, + batch_size, dataset_directory, log_directory, steps, diff --git a/requirements.txt b/requirements.txt index a0d985ce..cf583de9 100644 --- a/requirements.txt +++ b/requirements.txt @@ -4,7 +4,7 @@ fairscale==0.4.4 fonts font-roboto gfpgan -gradio==3.4.1 +gradio==3.5 invisible-watermark numpy omegaconf diff --git a/requirements_versions.txt b/requirements_versions.txt index 2bbea40b..abadcb58 100644 --- a/requirements_versions.txt +++ b/requirements_versions.txt @@ -2,7 +2,7 @@ transformers==4.19.2 diffusers==0.3.0 basicsr==1.4.2 gfpgan==1.3.8 -gradio==3.4.1 +gradio==3.5 numpy==1.23.3 Pillow==9.2.0 realesrgan==0.3.0 diff --git a/script.js b/script.js index 9543cbe6..88f2c839 100644 --- a/script.js +++ b/script.js @@ -50,9 +50,9 @@ document.addEventListener("DOMContentLoaded", function() { document.addEventListener('keydown', function(e) { var handled = false; if (e.key !== undefined) { - if((e.key == "Enter" && (e.metaKey || e.ctrlKey))) handled = true; + if((e.key == "Enter" && (e.metaKey || e.ctrlKey || e.altKey))) handled = true; } else if (e.keyCode !== undefined) { - if((e.keyCode == 13 && (e.metaKey || e.ctrlKey))) handled = true; + if((e.keyCode == 13 && (e.metaKey || e.ctrlKey || e.altKey))) handled = true; } if (handled) { button = get_uiCurrentTabContent().querySelector('button[id$=_generate]'); diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index b24f1a80..1266be6f 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -1,7 +1,9 @@ +import copy import math import os import sys import traceback +import shlex import modules.scripts as scripts import gradio as gr @@ -10,6 +12,75 @@ from modules.processing import Processed, process_images from PIL import Image from modules.shared import opts, cmd_opts, state + +def process_string_tag(tag): + return tag + + +def process_int_tag(tag): + return int(tag) + + +def process_float_tag(tag): + return float(tag) + + +def process_boolean_tag(tag): + return True if (tag == "true") else False + + +prompt_tags = { + "sd_model": None, + "outpath_samples": process_string_tag, + "outpath_grids": process_string_tag, + "prompt_for_display": process_string_tag, + "prompt": process_string_tag, + "negative_prompt": process_string_tag, + "styles": process_string_tag, + "seed": process_int_tag, + "subseed_strength": process_float_tag, + "subseed": process_int_tag, + "seed_resize_from_h": process_int_tag, + "seed_resize_from_w": process_int_tag, + "sampler_index": process_int_tag, + "batch_size": process_int_tag, + "n_iter": process_int_tag, + "steps": process_int_tag, + "cfg_scale": process_float_tag, + "width": process_int_tag, + "height": process_int_tag, + "restore_faces": process_boolean_tag, + "tiling": process_boolean_tag, + "do_not_save_samples": process_boolean_tag, + "do_not_save_grid": process_boolean_tag +} + + +def cmdargs(line): + args = shlex.split(line) + pos = 0 + res = {} + + while pos < len(args): + arg = args[pos] + + assert arg.startswith("--"), f'must start with "--": {arg}' + tag = arg[2:] + + func = prompt_tags.get(tag, None) + assert func, f'unknown commandline option: {arg}' + + assert pos+1 < len(args), f'missing argument for command line option {arg}' + + val = args[pos+1] + + res[tag] = func(val) + + pos += 2 + + return res + + class Script(scripts.Script): def title(self): return "Prompts from file or textbox" @@ -32,26 +103,48 @@ class Script(scripts.Script): return [ gr.Checkbox.update(visible = True), gr.File.update(visible = not checkbox_txt), gr.TextArea.update(visible = checkbox_txt) ] def run(self, p, checkbox_txt, data: bytes, prompt_txt: str): - if (checkbox_txt): + if checkbox_txt: lines = [x.strip() for x in prompt_txt.splitlines()] else: lines = [x.strip() for x in data.decode('utf8', errors='ignore').split("\n")] lines = [x for x in lines if len(x) > 0] - img_count = len(lines) * p.n_iter - batch_count = math.ceil(img_count / p.batch_size) - loop_count = math.ceil(batch_count / p.n_iter) - print(f"Will process {img_count} images in {batch_count} batches.") - p.do_not_save_grid = True - state.job_count = batch_count + job_count = 0 + jobs = [] + + for line in lines: + if "--" in line: + try: + args = cmdargs(line) + except Exception: + print(f"Error parsing line [line] as commandline:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + args = {"prompt": line} + else: + args = {"prompt": line} + + n_iter = args.get("n_iter", 1) + if n_iter != 1: + job_count += n_iter + else: + job_count += 1 + + jobs.append(args) + + print(f"Will process {len(lines)} lines in {job_count} jobs.") + state.job_count = job_count images = [] - for loop_no in range(loop_count): - state.job = f"{loop_no + 1} out of {loop_count}" - p.prompt = lines[loop_no*p.batch_size:(loop_no+1)*p.batch_size] * p.n_iter - proc = process_images(p) + for n, args in enumerate(jobs): + state.job = f"{state.job_no + 1} out of {state.job_count}" + + copy_p = copy.copy(p) + for k, v in args.items(): + setattr(copy_p, k, v) + + proc = process_images(copy_p) images += proc.images return Processed(p, images, p.seed, "") diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index 8c7da6bb..88ad3bf7 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -12,7 +12,7 @@ import gradio as gr from modules import images from modules.hypernetworks import hypernetwork -from modules.processing import process_images, Processed, get_correct_sampler +from modules.processing import process_images, Processed, get_correct_sampler, StableDiffusionProcessingTxt2Img from modules.shared import opts, cmd_opts, state import modules.shared as shared import modules.sd_samplers @@ -354,6 +354,9 @@ class Script(scripts.Script): else: total_steps = p.steps * len(xs) * len(ys) + if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr: + total_steps *= 2 + print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})") shared.total_tqdm.updateTotal(total_steps * p.n_iter) diff --git a/style.css b/style.css index 2306c002..33832ebf 100644 --- a/style.css +++ b/style.css @@ -115,7 +115,7 @@ padding: 0.4em 0; } -#roll, #paste{ +#roll, #paste, #style_create, #style_apply{ min-width: 2em; min-height: 2em; max-width: 2em; @@ -126,14 +126,14 @@ margin: 0.1em 0; } -#style_apply, #style_create, #interrogate{ - margin: 0.75em 0.25em 0.25em 0.25em; - min-width: 5em; +#interrogate_col{ + min-width: 0 !important; + max-width: 8em !important; } - -#style_apply, #style_create, #deepbooru{ - margin: 0.75em 0.25em 0.25em 0.25em; - min-width: 5em; +#interrogate, #deepbooru{ + margin: 0em 0.25em 0.9em 0.25em; + min-width: 8em; + max-width: 8em; } #style_pos_col, #style_neg_col{ @@ -167,10 +167,6 @@ button{ align-self: stretch !important; } -#img2maskimg .h-60{ - height: 30rem; -} - .overflow-hidden, .gr-panel{ overflow: visible !important; } @@ -241,13 +237,6 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s margin: 0; } -.gr-panel div.flex-col div.justify-between div{ - position: absolute; - top: -0.1em; - right: 1em; - padding: 0 0.5em; -} - #settings .gr-panel div.flex-col div.justify-between div{ position: relative; z-index: 200; @@ -320,6 +309,8 @@ input[type="range"]{ height: 100%; overflow: auto; background-color: rgba(20, 20, 20, 0.95); + user-select: none; + -webkit-user-select: none; } .modalControls { @@ -443,10 +434,6 @@ input[type="range"]{ --tw-bg-opacity: 0 !important; } -#img2img_image div.h-60{ - height: 480px; -} - #context-menu{ z-index:9999; position:absolute; @@ -521,3 +508,11 @@ canvas[key="mask"] { .row.gr-compact{ overflow: visible; } + +#img2img_image, #img2img_image > .h-60, #img2img_image > .h-60 > div, #img2img_image > .h-60 > div > img, +img2maskimg, #img2maskimg > .h-60, #img2maskimg > .h-60 > div, #img2maskimg > .h-60 > div > img +{ + height: 480px !important; + max-height: 480px !important; + min-height: 480px !important; +} diff --git a/webui.sh b/webui.sh index 05ca497d..980c0aaf 100755 --- a/webui.sh +++ b/webui.sh @@ -82,8 +82,8 @@ then clone_dir="${PWD##*/}" fi -# Check prequisites -for preq in git python3 +# Check prerequisites +for preq in "${GIT}" "${python_cmd}" do if ! hash "${preq}" &>/dev/null then