Merge pull request #3511 from bamarillo/master

[API][Feature] Add extras endpoints
This commit is contained in:
AUTOMATIC1111 2022-10-29 07:24:37 +03:00 committed by GitHub
commit d5f31f1e14
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 104 additions and 57 deletions

View file

@ -1,46 +1,37 @@
from modules.api.models import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI import uvicorn
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
from fastapi import APIRouter, HTTPException
import modules.shared as shared
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.sd_samplers import all_samplers from modules.sd_samplers import all_samplers
from modules.extras import run_pnginfo from modules.extras import run_extras
import modules.shared as shared
import uvicorn def upscaler_to_index(name: str):
from fastapi import Body, APIRouter, HTTPException try:
from fastapi.responses import JSONResponse return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
from pydantic import BaseModel, Field, Json except:
from typing import List raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
import json
import io
import base64
from PIL import Image
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
class TextToImageResponse(BaseModel): def setUpscalers(req: dict):
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") reqDict = vars(req)
parameters: Json reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
info: Json reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
reqDict.pop('upscaler_1')
class ImageToImageResponse(BaseModel): reqDict.pop('upscaler_2')
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") return reqDict
parameters: Json
info: Json
class Api: class Api:
def __init__(self, app, queue_lock): def __init__(self, app, queue_lock):
self.router = APIRouter() self.router = APIRouter()
self.app = app self.app = app
self.queue_lock = queue_lock self.queue_lock = queue_lock
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"]) self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
def __base64_to_image(self, base64_string): self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
# if has a comma, deal with prefix
if "," in base64_string:
base64_string = base64_string.split(",")[1]
imgdata = base64.b64decode(base64_string)
# convert base64 to PIL image
return Image.open(io.BytesIO(imgdata))
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
sampler_index = sampler_to_index(txt2imgreq.sampler_index) sampler_index = sampler_to_index(txt2imgreq.sampler_index)
@ -60,15 +51,9 @@ class Api:
with self.queue_lock: with self.queue_lock:
processed = process_images(p) processed = process_images(p)
b64images = [] b64images = list(map(encode_pil_to_base64, processed.images))
for i in processed.images:
buffer = io.BytesIO()
i.save(buffer, format="png")
b64images.append(base64.b64encode(buffer.getvalue()))
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=processed.js())
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
sampler_index = sampler_to_index(img2imgreq.sampler_index) sampler_index = sampler_to_index(img2imgreq.sampler_index)
@ -83,7 +68,7 @@ class Api:
mask = img2imgreq.mask mask = img2imgreq.mask
if mask: if mask:
mask = self.__base64_to_image(mask) mask = decode_base64_to_image(mask)
populate = img2imgreq.copy(update={ # Override __init__ params populate = img2imgreq.copy(update={ # Override __init__ params
@ -98,7 +83,7 @@ class Api:
imgs = [] imgs = []
for img in init_images: for img in init_images:
img = self.__base64_to_image(img) img = decode_base64_to_image(img)
imgs = [img] * p.batch_size imgs = [img] * p.batch_size
p.init_images = imgs p.init_images = imgs
@ -106,20 +91,39 @@ class Api:
with self.queue_lock: with self.queue_lock:
processed = process_images(p) processed = process_images(p)
b64images = [] b64images = list(map(encode_pil_to_base64, processed.images))
for i in processed.images:
buffer = io.BytesIO()
i.save(buffer, format="png")
b64images.append(base64.b64encode(buffer.getvalue()))
if (not img2imgreq.include_init_images): if (not img2imgreq.include_init_images):
img2imgreq.init_images = None img2imgreq.init_images = None
img2imgreq.mask = None img2imgreq.mask = None
return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=processed.js()) return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
def extrasapi(self): def extras_single_image_api(self, req: ExtrasSingleImageRequest):
raise NotImplementedError reqDict = setUpscalers(req)
reqDict['image'] = decode_base64_to_image(reqDict['image'])
with self.queue_lock:
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict)
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
reqDict = setUpscalers(req)
def prepareFiles(file):
file = decode_base64_to_file(file.data, file_path=file.name)
file.orig_name = file.name
return file
reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
reqDict.pop('imageList')
with self.queue_lock:
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
def pnginfoapi(self): def pnginfoapi(self):
raise NotImplementedError raise NotImplementedError

View file

@ -1,10 +1,10 @@
from array import array
from inflection import underscore
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field, create_model
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
import inspect import inspect
from pydantic import BaseModel, Field, create_model
from typing import Any, Optional
from typing_extensions import Literal
from inflection import underscore
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
from modules.shared import sd_upscalers
API_NOT_ALLOWED = [ API_NOT_ALLOWED = [
"self", "self",
@ -106,3 +106,46 @@ StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
StableDiffusionProcessingImg2Img, StableDiffusionProcessingImg2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}] [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
).generate_model() ).generate_model()
class TextToImageResponse(BaseModel):
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
parameters: dict
info: str
class ImageToImageResponse(BaseModel):
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
parameters: dict
info: str
class ExtrasBaseRequest(BaseModel):
resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.")
show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?")
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.")
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?")
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
class ExtraBaseResponse(BaseModel):
html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")
class ExtrasSingleImageRequest(ExtrasBaseRequest):
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
class ExtrasSingleImageResponse(ExtraBaseResponse):
image: str = Field(default=None, title="Image", description="The generated image in base64 format.")
class FileData(BaseModel):
data: str = Field(title="File data", description="Base64 representation of the file")
name: str = Field(title="File name")
class ExtrasBatchImagesRequest(ExtrasBaseRequest):
imageList: list[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")
class ExtrasBatchImagesResponse(ExtraBaseResponse):
images: list[str] = Field(title="Images", description="The generated images in base64 format.")